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Summary

Pro jecting the mortality rates for a small population is a chal-

lenging enterprise. The development of mortality rates for small 

populations often show great variability in improvement rates 

over time and across age groups. Consequently, simple ex-

trapolatory techniques yield unreliable results which are very 

sensitive to the data period and age bands chosen. 

In this paper we develop a mortality model which combines 

small population data with data from a larger reference pop-

ulation. Conceptually, we imagine that the long-term mortal-

ity development of the small population will follow that of the 

reference population but there may be substantial short- to 

middle-term deviations. Mathematically, we use the reference 

population to estimate an underlying parametric trend and a 

3-dimensional time series to model the deviations from this 

trend over time and age groups. Mortality projections, includ-

ing uncertainty assessment, are performed by a combination 

of trend extrapolation and standard time series methods. 

The trend model in itself features an application of frailty the-

ory which rests on the assumption that populations consist 

of genetically heterogeneous individuals some more frail than 

others. Generally, high age groups are more homogeneous 

than young age groups since frail individuals tend to die at 

younger ages. However, continuing improvements in nutrition, 

health care, medical advances etc. imply that the frailty com-

position of the different age 

groups change over time. In effect, the model predicts that we 

will witness higher improvements rates in age-specific death 

rates for high ages in the future than seen historically. 

The combination of a structured underlying trend and a stochas-

tic model accounting for the deviations from the trend allows us 

to make biologically plausible, stable forecasts from noisy data. 

We apply the model to Danish mortality data with the reference 

population being a pooled international data set. 

With this application in mind the model has been dubbed 

SAINT for Spread Adjusted INternational Trend. However, de-

spite the name the reference data set need not represent an 

international trend. The proposed modelling approach is appli-

cable whenever a suitable reference population can be found, 
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e.g. the population of interest could be that of a life insurance 

or pension company with a national or regional data set as 

reference.

Introduction

Almost all developed countries have experienced steadily de-

clining death rates throughout the 20th century. This devel-

opment has continued in the first decade of the 21st centu-

ry and there is no sign of death rates levelling out or improve-

ment rates even slowing down. Even countries like Japan and 

France which enjoy some of the lowest death rates in the world 

continue to experience improvements. 

Mortality projections, and an assessment of their uncertain-

ty, are of vital importance in a number of areas ranging from 

public financing policymaking ensuring long-term sustainabil-

ity of health care expenditures to individual pension saving 

decisions. The future development in death rates and life ex-

pectancy is also highly relevant for pension funds, in particular, 

those legally obliged to provide adequate reserves for life an-

nuity type liabilities. A great number of mortality models have 

been proposed most of which can be characterized as pure-

ly statistical models extrapolating past trends. Undoubtedly, 

the most influential and popular model is the one proposed by 

Lee and Carter (1992) although numerous extensions and other 

model types have been proposed since then, see e.g. Brouhns 

et al. (2002); Lee and Miller (2001); Renshaw and Haberman 

(2006); de Jong and Tickle (2006); Currie et al. (2004); Cairns 

et al. (2006). 

The Lee-Carter model in its original form assumes age-specific, 

relative rates of improvements which are constant over time. 

Age groups which has had low rates of improvements in the 

past will be pro jected to have low rates of improvements also 

in the future, and likewise for age groups with high past rates 

of improvement. This lack of structure may lead to biologically 

implausible forecast with e.g. pro jected death rates for high 

age groups crossing that of younger age groups. In fairness, 

the model was developed specifically for the US which, like 

other large populations, has had a regular improvement pat-

tern across age groups over time (at least since 1950) in which 

case the intrinsic lack of structure of the Lee-Carter model 

does not become apparent. 

However, for small populations, like Denmark, the mortality 

evolution has been much more erratic with great variability 

in rates of improvements over time and age groups in which 

case simple extrapolative techniques do not produce sensi-

ble forecasts. 

Another shortcoming of the Lee-Carter and similar methods 

is the inability to forecast improvements in age groups which 

have not experienced improvements in the past (of course, 

some may argue that this is a virtue). Thus high age groups, say 

the 90-year-olds, which historically have had only very modest 

rates of improvements will be pro jected to have very low rates 

of improvement in the future also, while the death rates for 

younger age groups will improve at a higher rate thereby cre-

ating an increasingly steep mortality curve at high ages. This 

scenario is consistent with the existence of a fixed upper limit 

to human life spans which some do indeed believe to 

be the case.

 

There are, however, good reasons to believe that high age mor-

tality will improve more markedly in the future than in the past. 

Reaching the age of 90 has historically been achievable for 

only the most robust individuals which have been relatively in-

sensitive to the general level of health in the society. However, 

as reaching the age of 90 becomes more common this group 

will be more similar to the younger age groups and more re-

sponsive to future medical and other improvements. These ide-

as can be formalized by the use of frailty theory which assumes 

that people are born with an individual level of frailty. 

The purpose of the work presented here is twofold. First, to pro-

duce stable long-term projections from volatile mortality data. 

Second, to ensure biologically plausible forecasts which allow 

for non-constant rates of improvement over time. 

The first aim is achieved by a modelling framework in which an 

underlying trend is estimated from a larger reference data set 

while a time series model accounts for the observed deviations 

of the mortality data of interest from the trend. This structure 

guarantees stable long-term behavior while accommodating 

substantial local variation. 

The second aim is achieved by choosing a parsimonious para-

metric model for the trend with biologically interpretable com-

ponents, one of which being the amount of heterogeneity in 

frailty levels (at birth). 

The paper is organized as follows. In section 2 we present the 

Danish mortality data along with the international reference 

data set and present the proposed modelling framework, sec-

tion 3 contains a short exposition of frailty theory and devel-

ops the proposed parametric form for the underlying trend, the 

trend model and its estimated parameters are given in section 

4, while the spread model and its estimated parameters are 

found in section 5.
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2. Data description and modelling framework

2.1. Data. Data for this study originates from the Human Mor-

tality Data-base2 , which offers free access to updated records 

on death counts and exposure data for a long list of countries. 

The database is maintained by University of California, Berke-

ley, United Stated and Max Planck Institute for Demographics 

Research, Germany. 

For each country and each sex data consists of death counts, 
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improve more markedly in the future than in the past. Reaching the age of
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medical and other improvements. These ideas can be formalized by the use
of frailty theory which assumes that people are born with an individual level
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long-term projections from volatile mortality data. Second, to ensure biolog-
ically plausible forecasts which allow for non-constant rates of improvement
over time.
The first aim is achieved by a modelling framework in which an under-

lying trend is estimated from a larger reference data set while a time series
model accounts for the observed deviations of the mortality data of interest
from the trend. This structure guarantees stable long-term behavior while
accommodating substantial local variation.
The second aim is achieved by choosing a parsimonious parametric model

for the trend with biologically interpretable components, one of which being
the amount of heterogeneity in frailty levels (at birth).
The paper is organized as follows. In section 2 we present the Danish

mortality data along with the international reference data set and present
the proposed modelling framework, section 3 contains a short exposition of
frailty theory and develops the proposed parametric form for the underlying
trend, the trend model and its estimated parameters are given in section 4,
while the spread model and its estimated parameters are found in section 5.

2. Data description and modelling framework

2.1. Data. Data for this study originates from the Human Mortality Data-
base2, which offers free access to updated records on death counts and ex-
posure data for a long list of countries. The database is maintained by
University of California, Berkeley, United Stated and Max Planck Institute
for Demographics Research, Germany.
For each country and each sex data consists of death counts, {D(t, x)}, and

corresponding exposures, {E(t, x)}, for a range of years t and ages x. D(t, x)
denotes the number of deaths occurring in calender year t among people aged
x, and E(t, x) denotes the total number of years lived during calender year
t by people of age x. For readers familiar with the Lexis diagram, D(t, x)
counts the number of deaths in the square [t, t + 1) × [x, x + 1) of the Lexis
diagram and E(t, x) gives the corresponding exposure.
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since the prime focus is adult mortality and since the mortality pattern at
young ages differs markedly from adult mortality all ages below 20 have been
excluded. For very high ages the quality of data is poor and sometimes based
on calculated quantities and for this reason all ages above 100 have also been
excluded.
In the following, DInt(t, x) and EInt(t, x) denotes, respectively, the total

number of deaths and the total exposure in calender year t among people
aged x in those of the 18 countries for which data exists for that year. The
same quantities for Denmark will be denoted DDK(t, x) and EDK(t, x), re-
spectively. From the death counts and exposure data we form the (crude)
death rates

(1) m(t, x) =
D(t, x)

E(t, x)
for t = 1935, . . . , 2004, x = 20, . . . , 100.

The pooled data set has for women a total of 180 million deaths with an
exposure of about 15 billion person years and for men a total of 197 million
deaths with an exposure of about 14 billion person years. For Danish females
there are a total of 1.6 million deaths with an exposure of 120 million person
years and for Danish males there are a total of 1.7 million deaths with an
exposure of 114 million person years. Thus the international data set is
approximately 100 times larger than the Danish data.

2.2. Historic development. The evolution of age-specific death rates in
Denmark can be seen on Figure 1. On first sight it seems that death rates
have been steadily declining throughout the period. However, a closer look
at the numbers reveals that there has been considerable variation in the pace
of improvements over time and across age groups. A thorough descriptive
analysis of the evolution in Danish death rates from 1835 to present, includ-
ing a life expectancy decomposition analysis, can be found in Jarner et al.

(2007). Here we will give only a brief overview of the development in Danish
mortality and compare it with the international development.
The period under study can informally be divided into four subperiods:

1935-1950, 1950-1980, 1980-1995 and 1995-2004, each having a distinct im-
provement pattern. In the first period (which in fact goes back to 1900) there
were considerable improvements in death rates for both sexes and most age
groups, except for the oldest old. The annual rate of improvement in age-
specific death rates were about 3% for ages below 30, just below 2% for
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ble improvements in death rates for both sexes and most age 

groups, except for the oldest old. The annual rate of improve-

ment in agespecific death rates were about 3% for ages be-

low 30, just below 2% for ages between 30 and 60, and about 

0.5% for ages above 60. For a precise definition of how these 

numbers are calculated see Jarner et al. (2007).

2 See www.mortality.org
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The second period from 1950 to 1980, however, saw only 

very modest improvement rates for most age groups. For 

women the age group from 30 to 60 had annual rates of im-

provement of 0.7%, while the same age group for men had 

a slight increase in death rates over that period. Also men 

above 60 had virtually no improvements in mortality rates, 

while the same age group for women had sizeable improve-

ments of about 1.5% per year.

For women the slow rates of improvements from 1950 to 

1980 were reduced even further from 1980 to 1995. The age 

group from 30 to 60 had annual rates of improvements of 

0.8%, while the age group above 60 had rates of improve-

ment of just 0.1%. For men the corresponding rates were, 

respectively, 1.0% and 0.4%, thus only marginally higher.

Since 1995 improvements have picked up again and both 

sexes are enjoying historically high improvement rates. For 

men annual rates of improvement are about 2% for all age 

groups above 30, and for women rates are about 3.4% for 

ages from 30 to 60 and about 1.7% for ages above 60.

In summary, the younger age groups have had higher annu-

al rates of improvements over the period than the older age 

groups, but rates of improvement for the older age groups 

have been increasing over the last 20 years.

Figure 2 shows the evolution in Danish age-specific death 

rates for ages 50, 60, 70 and 80 together with the same 

rates for the international data set. Two features in par-

ticular stand out. First, the evolution in international rates 

seems to have been much more steady than the Danish ev-

olution. This is hardly surprising considering that the inter-

national data set consists of data from 18 different coun-

tries around the globe. Most national and even regional ef-

fects are likely to be smoothed out when pooled. The only 

feature from the Danish data which is also present in the 

pooled data is the lower pace of improvements from 1950 

Figure 2. Danish and international development in fe-

male (top panel) and male (bottom panel) log death 

rates from 1935 to 2004 for the age groups 50, 60, 

70 and 80. For all age groups Danish rates start be-

low and end above the international rates.
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Figure 1: Historic development in female (top panel) 

and male (bottom panel) log death rates in Denmark 

from 1935 to 2004 for the age groups 20, 30, . . . , 100. 

The lines represent the age groups in decreasing or-

der with the 100-year-olds at the top and the 20-year-

olds at the bottom
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to 1980, although the slowdown is much less pronounced. 

Arguably, the increased rates of improvements among the 

oldest over the period is also visible in the international 

data, especially for men.

Second, the relative worsening of Danish death rates com-

pared to international rates is striking (and, from a Dan-

ish perspective, alarming). Death rates for Danish females 

were about the same as the international level up to 1980. 

Over the next 15 years Danish female death rates stagnat-

ed while the international rates continued to decline and 

a sizeable gap was established. From 1995 onwards the 

gap has reduced somewhat but Danish women still suffer 

substantial excess mortality compared to the internation-

al level. Danish men started out having substantially lower 

death rates than the international level but their lead was 

eroded, in particular during the period from 1950 to 1980, 

and in 1980 they were at the international level. From 1980 

Danish male death rates have improved but by less than 

the international rates such that Danish males today have 

a slight excess mortality. Thus, for both sexes Denmark has 

lost ground compared to the international development, but 

might be starting to catch up. 

2.3. Modelling framework. Compared to Denmark the in-

ternational development in death rates has been much 

more stable with near-constant annual rates of improve-

ment. Denmark, on the other hand, has experienced alter-

nate periods with high and almost no improvements. Still, 

over long horizons the development in Danish rates seems 

to follow that of the international community.

In our view a good mortality model must be able to quantity 

both the likely drift in mortality in the future and the uncer-

tainty associated with the drift. In most prevailing models 

these two aims are achieved by the same time series mod-

el, often a random walk with drift. As a consequence, if data 

has shown large variability around a trend this translates 

into large uncertainty about the long-term trend.

However, although Denmark has had a much less stable de-

velopment than the international community as a whole it 

is unlikely that the long-term trends will deviate from each 

other. Furthermore, one must also assume that there are 

limits to how far Danish rates can fall behind, or get ahead 

of, international rates.

With this in mind we propose a two-component modelling 

framework in which we separately model the underlying 

trend and deviations from it. We shall refer to the devia-

tions as the spread. Schematically we have the structure

(2)     Danish mortality = international trend + spread.

This is the structure which has lead to the name SAINT for 

Spread Adjusted INternational Trend. We implicitly assume 

that the spread will fluctuate around zero (or perhaps an-

other fixed level), but that it does not have a trend compo-

nent of its own. With this decomposition we can separate 

the uncertainty about the underlying long-term trend from 

(the uncertainty of) shorter term deviations. Thus we can al-

low substantial short-term variability and still have stable 

long-term behavior.

In the following we will develop a model which conforms 

with this general framework. Specifically, we will propose a 

parametric model for the trend based on frailty theory and 

a 3-dimensional VAR-model for the spread. Clearly many 

other models will fall into the proposed framework and en-

joy the same long-term stability properties.

3. Frailty theory

3.1. Notation. In this section the object of study will be the 

time- and age-dependent gender-specific force of mortality, 
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instantaneous rate of dying for a person aged x at time t, i.e. the probability
that the person will die between time t and t + dt is µ(t, x)dt.
The survival function, F̄ (t, x), denotes the proportion of the cohort aged

x at time t still alive or, more mathematically, the probability that a person
born at time t− x is still alive at time t (at age x). In terms of the force of
mortality the survival function is given by

(3) F̄ (t, x) = e−
R t

t−x
µ(u,u−t+x)du.

Conversely,

(4) µ(t, x) = −
d

dδ
log F̄ (t + δ, x + δ)|δ=0

3.2. Old age mortality. Assume for now that the force of mortality is
time-invariant, i.e. µ(t, x) = µ(x). This is the starting point for classical
mortality modelling and various parametric forms of µ have been proposed
in this situation. Classical forms include the ones named after Gompertz

µ(x) = αeβx,

and Makeham

µ(x) = αeβx + γ.

Although widely used there seems to be no underlying reason why these sim-
ple forms should describe human mortality. In fact, several studies indicate
that the exponential form overestimate the mortality at high ages. Some
empirical studies even find a mortality plateau at high ages at which the
intensity essentially remains constant, others find a sub-exponential growth
rate at high ages.
One theory offering some insight into the phenomenon of slower increase

in the force of mortality at high ages is frailty theory. This theory assumes
that the population is heterogeneous with each person having an individual
level of susceptibility. As frail individuals are more likely to die first the
composition of the population will change over time such that the fraction
of robust individuals will increase. This selection mechanism causes the
overall mortality intensity to be more and more influenced by the mortality
intensity of the more robust individuals.
The following simple model illustrates the idea. Assume that the ith

person of a population has his own Makeham intensity:

(5) µi(x) = µ(x; zi) = ziαe
βx + γ,

where zi is an individual frailty parameter, while α, β and γ are shared by
all persons in the population. Assume furthermore that Z follows a scaled
Γ-distribution with mean 1 and variance σ2, i.e. its density is given by

(6) f(z) =
λλ

Γ(λ)
zλ−1e−λz,

where λ = 1/σ2 is the shape parameter.
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Although widely used there seems to be no underlying reason why these sim-
ple forms should describe human mortality. In fact, several studies indicate
that the exponential form overestimate the mortality at high ages. Some
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intensity essentially remains constant, others find a sub-exponential growth
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One theory offering some insight into the phenomenon of slower increase
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composition of the population will change over time such that the fraction
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overall mortality intensity to be more and more influenced by the mortality
intensity of the more robust individuals.
The following simple model illustrates the idea. Assume that the ith
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The individual survival function is

(7) F̄ (x; zi) = e−
R x

0 µi(u)du = e−ziα
R x

0 eβudu−xγ = e−ziα(eβx−1)/β−xγ ,

and the survival function at the population level thus becomes

F̄ (x) =

� ∞

0
F̄ (x; z)f(z)dz

=
λλ

Γ(λ)

� ∞

0
e−zα(eβx−1)/β−xγzλ−1e−λzdz

=
λλ

Γ(λ)
e−xγ

� ∞

0
e−z(λ+α(eβx−1)/β)zλ−1dz

=
λλ

(λ + α(eβx − 1)/β)λ
e−xγ

=

�

1

1 + σ2α(eβx − 1)/β

�1/σ2

e−xγ .

From this expression the force of mortality for the population can now be
derived

(8) µ(x) = −
d

dx
log F̄ (x) =

αeβx

1 + σ2α(eβx − 1)/β
+ γ.

Note that

(9) µ(x) →
β

σ2
+ γ for x → ∞.

Hence, although each individual intensity is exponentially increasing the se-
lection mechanism is so strong that the population intensity has a finite
asymptote. It is instructive to see how the level of heterogeneity, as measured
by σ2, affects the asymptotic level. If σ2 is very large the first term in (9) es-
sentially vanishes. In this case the population is very heterogeneous at birth
and contains a sizeable fraction of very robust individuals, i.e. individuals
with very low frailty and thus near-constant intensity µi(x) ≈ γ. The robust
individuals will dominate the "limit population" and the limit value of the
population intensity thus also becomes close to γ. If, on the other hand, σ2

is small the fraction of very robust individuals is smaller and less dominating
in the "limit population" and the asymptotic value of the intensity therefore
higher. In the limit case with σ2 = 0 the population is homogeneous and
the intensity equals the individual intensity, µ(x) = α exp(βx) + γ.
The model here described is the so-called logistic model or ’gamma-Make-

ham’ model, which has been used by e.g. Thatcher (1999) to model old age
mortality. The combination of individual mortality intensities of Makeham-
form and Gamma-distributed frailties makes the model mathematically ap-
pealing and allows explicit calculations. However, the qualitative aspects of
the model holds in more generality and under other assumptions about both
the form of individual intensities and the shape of the frailty distribution.
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intensity. This results in a time-varying population intensity with a more
involved structure than the ones normally seen.
Below we will derive the population intensity for a general frailty model

with time-varying living conditions. Assume that the mortality intensity for
an individual with frailty z is given by

(10) µ(t, x, z) = zαH

�
� t

t−x
g(s, s − t + x)ds

�

κ(t, x) + γ(t, x),

for some increasing function H.
The idea is that the individual mortality intensity is affected by four com-

ponents

(1) a frailty parameter affecting the general susceptibility of the individ-
ual;

(2) a "wear-out" index,
� t
t−x g ds, which accumulates the general living

conditions in the society during the period lived by the person. The
rate g(t, y) can be interpreted as the "rate" of aging at time t at age

y. In this terminology,
� t
t−x g ds can be interpreted as the "biological"

age of a person which in general will differ from his physical age, x;
(3) a time- and age-dependent effect, κ(t, x), which can be interpreted

as the current level of treatment and medical care;
(4) a time- and age-dependent effect, γ(t, x), which can be interpreted

as the current rate of accidents.

Note that letting H(y) = eβy, g(t, x) ≡ 1, κ(t, x) ≡ 1 and γ(t, x) ≡ γ
we are back at the time-invariant, simple frailty model from the previous
section.
The individual survival function is given by

(11) F̄ (t, x; z) = e−
R t

t−x
µ(u,u−t+x;z)du = e−zαI(t,x)−

R t

t−x
γ(u,u−t+x)du,

where I(t, x) =
� t
t−x H

�

� u
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κ(u, u − t + x)du. Assuming

frailties to follow a (scaled) Γ-distribution with mean 1 and variance σ2 the
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form (8) has been used as the basis for mortality models by letting some or all
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3.3. Frailty model with time-varying living conditions. The logistic
form (8) has been used as the basis for mortality models by letting some or all
of the parameters be time-dependent. This approach has been shown to fit
historic data well but the resulting intensity surface cannot be interpreted
as the result of selection in a heterogeneous population. To achieve this
interpretation one has to introduce the time-variation at the level of the
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survival function for the population becomes

F̄ (t, x) =

� ∞

0
F̄ (t, x; z)f(z)dz

=
λλ

Γ(λ)
e−

R t

t−x
γ(u,u−t+x)du

� ∞

0
e−z(λ+αI(t,x))zλ−1dz

=

�

1

1 + σ2αI(t, x)

�1/σ2

e−
R t

t−x
γ(u,u−t+x)du,

and hence

µ(t, x) = −
d

dδ
log F̄ (t + δ, x + δ)|δ=0

=
d

dδ

�

1

σ2
log

�

1 + σ2αI(t + δ, x + δ)
�

+

� t+δ

t−x
γ(u, u− t + x)du

�

|δ=0

=
αH

�

� t
t−x g(s, s− t + x)ds

�

κ(t, x)

1 + σ2αI(t, x)
+ γ(t, x).

(12)

Example. With H(y) = eβy, g ≡ 1 and κ(t) = ec(t−t0) one gets

µ(t, x) =
αeβxκ(t)

1 + σ2ακ(t)(eβx − e−cx)/(β + c)
+ γ(t, x).

3.4. Computation. The expression in (12) is hard to evaluate analytically
for general specifications of g and κ. To facilitate computation we will there-
fore assume that g and κ are constant on "integer" squares, i.e. g is assumed
to take the form

g(t, x) = g(i, k) for t ∈ [i, i + 1), x ∈ [k, k + 1), i, k ∈ N,

and likewise for κ. Under this assumption integrals over g are piecewise
linear functions which (for most specifications of H) makes it possible to
compute I, and hence µ, explicitly.
For H(y) = eβy we find for integer values of t and x, and u ≥ t− x:

H

�
� u

t−x
g(s, s − t + x)ds

�

= eβ
P�u�−1

i=t−x g(i,i−t+x)+βg(�u�,�u�−t+x)(u−�u�),

and hence
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where �u� denotes the largest integer smaller than or equal to u. Inserting
this in the expression for I(t, x) yields
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For integer values of t and x the intensity can thereby be written as
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It is also possible to write down an expression valid for all t and x, but it
becomes rather messy. The general expression has a number of "edge-effect"
terms arising from the misalignment of the integrals with the intervals over
which g and κ are assumed constant.

4. Trend modelling

4.1. Likelihood function. As previously announced we will use the inter-
national data set to estimate the underlying intensity surface. For a given
specification of µ we will assume that the DInt(t, x)’s are independent with

(14) DInt(t, x) ∼ Poisson (µ̄(t, x)EInt(t, x)) ,

where µ̄(t, x) is the average value of µ over the square [t, t + 1) × [x, x + 1).
As an approximation to this average we will use

(15) µ̄(t, x) =
1

4
(µ(t, x) + µ(t, x + 1) + µ(t + 1, x) + µ(t + 1, x + 1)) .
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survival function for the population becomes
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=
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1 + σ2αI(t, x)
+ γ(t, x).

(12)

Example. With H(y) = eβy, g ≡ 1 and κ(t) = ec(t−t0) one gets

µ(t, x) =
αeβxκ(t)

1 + σ2ακ(t)(eβx − e−cx)/(β + c)
+ γ(t, x).

3.4. Computation. The expression in (12) is hard to evaluate analytically
for general specifications of g and κ. To facilitate computation we will there-
fore assume that g and κ are constant on "integer" squares, i.e. g is assumed
to take the form

g(t, x) = g(i, k) for t ∈ [i, i + 1), x ∈ [k, k + 1), i, k ∈ N,

and likewise for κ. Under this assumption integrals over g are piecewise
linear functions which (for most specifications of H) makes it possible to
compute I, and hence µ, explicitly.
For H(y) = eβy we find for integer values of t and x, and u ≥ t− x:

H

�
� u
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g(s, s − t + x)ds
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P�u�−1
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Assuming a parametric form of g, κ and γ and collecting all parameters
(including α, β and σ2) in the vector θ the log-likelihood function becomes
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where the last term does not depend on θ.

4.2. Model. The following nine parameter model has been selected (among
a large number of candidate models) for its ability to fit the historic devel-
opment in mortality in the international data with a relatively parsimonious
structure. In particular, attention has been paid to the model’s ability to
capture the mortality of the 60+ years old as this part of the mortality sur-
face has the largest potential for future improvement. We have not applied
any formal tests in the model selection.
The model takes the form

α = 1

β = 1

σ = θ1

g(t, x) = θ2 + θ3x + θ4(t− 2000)

κ(t, x) = exp(θ5 + θ6x + θ7(t− 2000))

γ(t) = exp(θ8 + θ9(t− 2000))

The substraction of (year) 2000 in the specification of g, κ and γ is for
done interpretability reasons only. Thus g(2000, 0) = θ2 is the "aging" of
a newborn in year 2000, θ3x is the additional biological aging at age x and
θ4 is the additional aging across ages for each calender year relative to year
2000. Similar interpretations can be given to the parameters in κ and γ.

4.3. Estimation. Table 1 contains maximum likelihood estimates and cor-
responding 95% confidence intervals for the model given above for women
and men separately. Figure 3 illustrates the historic development in mortal-
ity and the fitted trend.
The model has three parameters (θ4, θ7, θ9) to describe three different

types of improvement in mortality over time. The main effect is carried by
θ7 which represents the annual improvement in mortality. This improvement
is estimated to be about 1.8% for both women and men.
The improvement in "accidents" (θ9) is estimated to about 9% for women.

This is due to the dramatic decrease among the 20 to 30 years old in the
beginning of the observation period, cf. top panel of Figure 3. However,
since the accident level (θ8) is already very low the high improvement rate
will have virtually no effect on future mortality. For men, on the other
hand, the accident level is not yet negligible and consequently the estimated
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structure. In particular, attention has been paid to the model’s ability to
capture the mortality of the 60+ years old as this part of the mortality sur-
face has the largest potential for future improvement. We have not applied
any formal tests in the model selection.
The model takes the form

α = 1

β = 1

σ = θ1

g(t, x) = θ2 + θ3x + θ4(t− 2000)

κ(t, x) = exp(θ5 + θ6x + θ7(t− 2000))
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The substraction of (year) 2000 in the specification of g, κ and γ is for
done interpretability reasons only. Thus g(2000, 0) = θ2 is the "aging" of
a newborn in year 2000, θ3x is the additional biological aging at age x and
θ4 is the additional aging across ages for each calender year relative to year
2000. Similar interpretations can be given to the parameters in κ and γ.

4.3. Estimation. Table 1 contains maximum likelihood estimates and cor-
responding 95% confidence intervals for the model given above for women
and men separately. Figure 3 illustrates the historic development in mortal-
ity and the fitted trend.
The model has three parameters (θ4, θ7, θ9) to describe three different

types of improvement in mortality over time. The main effect is carried by
θ7 which represents the annual improvement in mortality. This improvement
is estimated to be about 1.8% for both women and men.
The improvement in "accidents" (θ9) is estimated to about 9% for women.

This is due to the dramatic decrease among the 20 to 30 years old in the
beginning of the observation period, cf. top panel of Figure 3. However,
since the accident level (θ8) is already very low the high improvement rate
will have virtually no effect on future mortality. For men, on the other
hand, the accident level is not yet negligible and consequently the estimated
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Figure 3: Historic development in international female 

(top panel) and male (bottom panel) log mortality from 

1935 to 2004 for the age groups 20, 30, . . . , 100. The 

lines represent the age groups in decreasing order 

with the 100-year-olds at the top and the 20-year-olds 

at the bottom. Model estimate of trend with parame-

ters given in Table 1 is superimposed. 
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Parameter Women Men

Estimate 95%-CI Estimate 95%-CI
θ1 4.2805 · 10−1 ±3.4 · 10−4 2.7140 · 10−1 ±4.8 · 10−4

θ2 2.7148 · 10−2 ±4.8 · 10−6 9.1032 · 10−2 ±4.8 · 10−6

θ3 1.3046 · 10−3 ±1.2 · 10−7 6.2340 · 10−5 ±1.2 · 10−7

θ4 −2.4000 · 10−6 ±7.6 · 10−8 8.1353 · 10−5 ±7.2 · 10−8

θ5 −8.7838 · 100 ±3.6 · 10−4 −1.0573 · 101 ±3.4 · 10−4

θ6 −6.1950 · 10−3 ±4.8 · 10−6 1.0912 · 10−2 ±4.8 · 10−6

θ7 −1.8087 · 10−2 ±1.2 · 10−5 −1.7830 · 10−2 ±1.1 · 10−5

θ8 −1.1803 · 101 ±4.0 · 10−3 −7.5328 · 100 ±1.8 · 10−3

θ9 −9.0713 · 10−2 ±7.0 · 10−5 −2.5446 · 10−2 ±4.4 · 10−5

Table 1. Maximum likelihood estimates and 95% confidence
intervals for the model given in Section 4.2. The estimation
is based on international mortality data from 1935 to 2004
for ages 20 to 100 years.

improvement of about 2.5% per year will have some effect on the projected
mortality at young ages.
Finally, θ4 describes the annual improvement in "biological" aging. This

effect is very small for women and only slightly larger for men. Interestingly,
θ4 is positive for men indicating a slight acceleration in aging, which however
is dwarfed by the much larger general improvement.
The frailty parameter, θ1, is relatively large for both women and men. This

parameter controls the flatness of the mortality surface at high ages and the
estimated level reflects the fact that the 80+ years old have not (yet) had
the same rate of improvement as the younger age groups. However, as can
be seen from the curved projections in Figure 3 the model predicts these age
group to have larger improvements in the future.
The remaining parameters are shape parameters which are estimated to

provide a good fit to the age profile of mortality.
The confidence intervals provide in Table 1 are calculated by a chi-square

approximation to the log-likelihood function in (16). For a given parameter
the interval represents the range of values which can be accepted (all other
parameters kept fixed) in a test with a level of significance of 5%. The ranges
are in all cases very narrow as one would expect in the current situation with
a parsimonious model and a wealth of data. One could introduce stochastic
components at the trend model level to better reflect the level of uncertainty
in the projections. Here, however, we will take a simpler approach and place
all stochastic components in the spread model.

5. Spread modelling

The real object of interest is Danish mortality which will be modelled as
the international trend with an additional spread. The fundamental premise
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is that Danish mortality in the long run will develop similarly to the internal
trend but there will be short- to medium-term deviations. Thus we assumed
that the spread will fluctuate around zero.

5.1. Model. Given the international trend, µ, we will assume that the
DDK(t, x)’s are independent with

(17) DDK(t, x) ∼ Poisson (µ̄DK(t, x)EDK(t, x)) ,

where

µ̄DK(t, x) = µ̄(t, x) exp(at + btr1(x) + ctr2(x)),(18)

r1(x) = (x− 60)/40,

r2(x) = (x2 − 120x + 9160/3)/1000,

with µ̄ given by (15). The parametrization of the spread ensures that at

can be interpreted as the level of excess mortality in Denmark compared to
the international level, while bt and ct are higher order corrections to give a
closer fit to the observed mortality structure in Denmark. The regressors, r1

and r2, are chosen to be orthogonal and normalized to (about) 1 at age 20
and 100.
The three-dimensional time series of spread parameters, (at, bt, ct), is

modelled as a VAR-process

(19)





at

bt
ct



 = A





at−1

bt−1

ct−1



 + et,

where A is a three by three matrix of autoregression parameters and the
et’s are three-dimensional i.i.d. normally distributed variates with covariance
matrix Ω.

5.2. Estimation. In principle the VAR-parameters can be estimated di-
rectly by treating the spread parameters as so-called hidden variables. How-
ever, to ensure a simple and robust estimation procedure we will first treat
the three-dimensional time series of spread parameters, (at, bt, ct), as free
parameters and estimate these from model (17). Note that the estimate of
(at, bt, ct) only depends on the (population) mortality for year t. Second, we
will estimate the VAR-parameters by treating (the estimate of) the spread
parameters as observations.
For women the model estimates are

(20)
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−0.000895 0.003761 −0.000873
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Parameter Women Men

Estimate 95%-CI Estimate 95%-CI
θ1 4.2805 · 10−1 ±3.4 · 10−4 2.7140 · 10−1 ±4.8 · 10−4

θ2 2.7148 · 10−2 ±4.8 · 10−6 9.1032 · 10−2 ±4.8 · 10−6

θ3 1.3046 · 10−3 ±1.2 · 10−7 6.2340 · 10−5 ±1.2 · 10−7

θ4 −2.4000 · 10−6 ±7.6 · 10−8 8.1353 · 10−5 ±7.2 · 10−8

θ5 −8.7838 · 100 ±3.6 · 10−4 −1.0573 · 101 ±3.4 · 10−4

θ6 −6.1950 · 10−3 ±4.8 · 10−6 1.0912 · 10−2 ±4.8 · 10−6

θ7 −1.8087 · 10−2 ±1.2 · 10−5 −1.7830 · 10−2 ±1.1 · 10−5

θ8 −1.1803 · 101 ±4.0 · 10−3 −7.5328 · 100 ±1.8 · 10−3

θ9 −9.0713 · 10−2 ±7.0 · 10−5 −2.5446 · 10−2 ±4.4 · 10−5

Table 1. Maximum likelihood estimates and 95% confidence
intervals for the model given in Section 4.2. The estimation
is based on international mortality data from 1935 to 2004
for ages 20 to 100 years.

improvement of about 2.5% per year will have some effect on the projected
mortality at young ages.
Finally, θ4 describes the annual improvement in "biological" aging. This

effect is very small for women and only slightly larger for men. Interestingly,
θ4 is positive for men indicating a slight acceleration in aging, which however
is dwarfed by the much larger general improvement.
The frailty parameter, θ1, is relatively large for both women and men. This

parameter controls the flatness of the mortality surface at high ages and the
estimated level reflects the fact that the 80+ years old have not (yet) had
the same rate of improvement as the younger age groups. However, as can
be seen from the curved projections in Figure 3 the model predicts these age
group to have larger improvements in the future.
The remaining parameters are shape parameters which are estimated to

provide a good fit to the age profile of mortality.
The confidence intervals provide in Table 1 are calculated by a chi-square

approximation to the log-likelihood function in (16). For a given parameter
the interval represents the range of values which can be accepted (all other
parameters kept fixed) in a test with a level of significance of 5%. The ranges
are in all cases very narrow as one would expect in the current situation with
a parsimonious model and a wealth of data. One could introduce stochastic
components at the trend model level to better reflect the level of uncertainty
in the projections. Here, however, we will take a simpler approach and place
all stochastic components in the spread model.

5. Spread modelling

The real object of interest is Danish mortality which will be modelled as
the international trend with an additional spread. The fundamental premise
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is that Danish mortality in the long run will develop similarly to the internal
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r2(x) = (x2 − 120x + 9160/3)/1000,

with µ̄ given by (15). The parametrization of the spread ensures that at
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the international level, while bt and ct are higher order corrections to give a
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parameters and estimate these from model (17). Note that the estimate of
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will estimate the VAR-parameters by treating (the estimate of) the spread
parameters as observations.
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5.3. Forecasting and confidence intervals. Forecasting in the VAR-model
(19) is based on the conditional distribution of (at+h, bt+h, ct+h) given (at, bt, ct).
From the data generating equation and its expansion
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From these expressions forecasted values and corresponding (pointwise)
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Figures 4 and 5 show the estimated spread parameters and their forecasted
value with confidence intervals for women and men.
The current level of excess mortality among Danish women compared to

the international level is about 20% and this is forecasted to gradually fall
back to zero over the next 40 years. Danish men, on the other hand, is

,

with
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ĉt+h



 |





at

bt
ct



 = mh ± 1.96
�

diag(Vh).

Figures 4 and 5 show the estimated spread parameters and their forecasted
value with confidence intervals for women and men.
The current level of excess mortality among Danish women compared to

the international level is about 20% and this is forecasted to gradually fall
back to zero over the next 40 years. Danish men, on the other hand, is

.

From these expressions forecasted values and corresponding 

(pointwise) 95%-confidence intervals are easily obtained as

	      

19

and for men we get

(21)





at

bt
ct



 =





0.8211 −0.1091 −0.1338
−0.0788 0.9114 0.0467
−0.0532 −0.0532 0.9081









at−1

bt−1

ct−1



 + et,

with

et ∼ N3(0,





0.002233 −0.001717 −0.000058
−0.001717 0.005059 −0.000001
−0.000058 −0.000001 0.003109



).

5.3. Forecasting and confidence intervals. Forecasting in the VAR-model
(19) is based on the conditional distribution of (at+h, bt+h, ct+h) given (at, bt, ct).
From the data generating equation and its expansion





at+h

bt+h

ct+h



 = A





at+h−1

bt+h−1

ct+h−1



 + et+h

= Ah





at

bt
ct



 + Ah−1et+1 + . . . + et+h

we obtain




at+h

bt+h

ct+h



 |





at

bt
ct



 ∼ N(mh, Vh),

where mh and Vh are given by either the recursive expressions

mh = Amh−1, m0 =





at

bt
ct





Vh = AVh−1A
t + Ω, V0 = 0,

or the closed-form expressions

mh = Ah





at

bt
ct



 , Vh =
h−1
�

i=0

AiΩ(Ai)t.

From these expressions forecasted values and corresponding (pointwise)
95%-confidence intervals are easily obtained as





ât+h

b̂t+h
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Figures 4 and 5 show the estimated spread parameters and 

their forecasted value with confidence intervals for women and 

men.

The current level of excess mortality among Danish women 

compared to the international level is about 20% and this is 

forecasted to gradually fall back to zero over the next 40 years. 

Danish men, on the other hand, is very much in line with the in-

ternational level. The confidence intervals are rather wide re-

flecting the observed variation in the spread over the estima-

tion period.
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Given a forecast of the spread, a forecast of Danish mortali-

ty is readily obtained from (18). Figure 6 shows fitted and fore-

casted Danish mortality as well as the estimated internation-

al trend. For women the Danish and international levels are 

currently quite far apart, while for men the two levels are al-

most identical.

Figure 4: Estimated and forecasted spread para-

meters for women with pointwise 95% confidence 

intervals.

Figure 5. Estimated and forecasted spread parame-

ters for men with pointwise 95% confidence intervals.
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Figure 6. Historic development in female (top pan-

el) and male (bottom panel) log mortality in Denmark 

from 1935 to 2004 for the age groups 20, 30, . . . , 100. 

The lines represent the age groups in decreasing or-

der with the 100-year-olds at the top and the 20-year-

olds at the bottom. Model estimate of both the inter-

national and the Danish level is superimposed.
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