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We consider optimal portfolio insurance for a mutually owned with-profits pension
fund. First, intergenerational fairness is imposed by requiring that the pension
fund is driven towards a steady state. Subject to this condition the optimal
asset allocation is identified among the class of constant proportion portfolio
insurance strategies by maximising expected power utility of the benefit. For a
simple contract approximate analytical results are available and accurate, whereas
for a more involved contract Monte Carlo methods must be applied to pick out
the best design. The main insights are (i) aggressive investment strategies are
disastrous for the clients; (ii) in most cases it is optimal to gear the bonus reserve;
and (iii) the results are far less sensitive to the agent’s risk aversion than in the
classical case of Merton (1969), and as opposed to Merton horizon matters even
with constant investment opportunities (because of the serial dependence between
bonuses).
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Introduction

Design of fair pension contracts has received some attention in the academic
literature over the last 10 years. Traditionally the notion of fairness concerns
the relationship between disjoint stakeholders, namely (equity) owners and a
group of clients. In this line of work the main reference is Grosen and
Jorgensen (2002) (extending Briys and de Varenne (1997)). Their model,
however, is defined on a finite horizon and has no intergenerational
considerations. Thus, in essence it is a single life model. We let the fund live
on an infinite horizon, thus allowing transferring wealth between generations
through the bonus reserve. This will lead to some degree of unfairness between
different cohorts of clients. Therefore, we impose stationarity (of the funding
ratio) at the outset, and consider the company only in its (distant future)
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invariant condition. This implies that, as seen from today, (distant) future
clients are all treated the same. Given this restriction, the “best” such
distribution is identified by maximising expected power utility of the resulting
benefit. In turn this yields an optimal strategy for portfolio insurance (to
obtain stationarity it is necessary to impose an investment rule that guarantees
absence of liquidation). Our model company has no group of equity holders
disjoint from the clients, but nevertheless the framework of Grosen and
Jorgensen (2002) is useful for designing fair contracts. For a number of
reasons, however, we choose to adopt a different approach.

In designing optimal strategies for managing (distributing and investing)
bonus reserves for individual contracts Steffensen (2004) uses the framework of
Hindi and Huang (1993) to find the optimal distribution rule, which turns out
to give rise to so-called local time payments (loosely speaking the optimal
distribution policy consists of giving an infinitesimal amount of bonus
whenever a certain barrier is hit, which happens infinitely often), and
an optimal asset allocation strategy which, at least in a special case,
turns out to be a modified version of the mutual fund separation theorem.
Inspired by the results we impose a discrete time version of his bonus
distribution rule.

The paper by Grosen and Jgrgensen (2000) partly remedies the concerns
over single life models and our approach is very much in the spirit of their
work — even if we differ in vital aspects. Also, Preisel et al. (forthcoming)
abandon the single life approach and their paper serves as the blueprint for this
paper. Accordingly, it will be discussed thoroughly below and its framework
will be used, albeit slightly modified, as a basis for the problems considered
in this paper. Another important contribution taking the clients’ point of view
and integrating the overall pension fund dynamics is the recent paper by
Dgskeland and Nordahl (2008b).

As implied in the preceding paragraphs, we believe that the main
shortcoming in the existing literature on pension fund design is that it lacks
disentanglement of the individual contracts from the overall financial status
of the company. Such separation is necessary to fully understand the complex
dynamics of the entire entity. We offer a new approach to optimising
with-profits pension fund operation that can supplement the existing literature
on this topic.

As pointed out by Dgskeland and Nordahl (2008a) different, even non-
overlapping, generations in a with-profits pension fund may systematically
subsidise each other because the bonus reserve does not belong to a specific
subset of the collective, but to the collective as a diffuse whole. One way of
partially overcoming this is to price each contract correctly by adjusting
the terms to reflect the fund’s financial and demographic condition at the
time of underwriting. In practice, however, the stipulations are not adapted to
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fit the economic situation of the fund, hence it is unattractive to enter funds
that are poor (and possibly also funds that are increasing in size because bonus
reserves may be crowded out by new entrants).

We take the view of an altruistic board of a mutually owned with-profits
pension fund seeking to treat future generations equally. This property could
be obtained by valuing the bonus option at the time of underwriting, and
charging for it. But that approach is not desirable since it will compel the
fund to put the bonus option on the balance sheet. Hence, in the short run,
our board accepts that the clients are not treated equally. One reason for
giving the board such influence over future generations could be that it
represents some external party, say a union or governmental institution
representing the common good rather than the present owners — or possibly
subsidising the fund at its foundation. Alternatively the demand for
intergenerational fairness may come from some authority. The point is
that in the presence of a positive bonus reserve it may be in the interest of
the present clients as a whole to dissolve the company rather than leave
anything to generations to come. To counter that we let some external party
design the fund.

In Section “Model” the pension fund, its clients, rules and environment are
introduced along with the general contract that is analysed in the paper. Our
notion of fairness is introduced in Section “Defining fairness”. Section
“Analytical results” contains “approximate analytical” results for the optimal
operation of the fund, considering a simple contract, whereas another type of
approximation is used to get simulated results in Section “Numerical results”.
The latter results are partly intended to assess the quality of the analytical
approximations and partly intended to derive optimal rules for more complex
contracts. Further, the speed at which the fund drives towards stationarity is
analysed. Finally, Section “Concluding remarks” discusses and summarises the
results of the preceding sections, while extensions and limitations are also
touched upon.

Model

The environment in which the pension fund operates is as follows:

Let (B,),;>0 be a Brownian motion on a probability space (€2, F, ) generating
the filtration (%)= with 7,2 6(By, 0<s<1) U/, (t=0) — that is augmented
by the null sets.

To the pension fund, but not necessarily to its individual clients, the financial
market is frictionless regarding taxes, divisibility, transaction costs, liquidity
and portfolio restrictions. This market consists of a bank account with interest
intensity r, and a single risky asset (think of a well-diversified portfolio of risky
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assets) with volatility ¢ and market price of risk 4. Hence, the joint value
process is

ds, = diags, [(r,, ro+ Aay) di 4+ (0, 3)TdB,|, (120, So> (0, 0)).

We will consider r,=r, A,=41>0, and o,=¢ >0 for all 1>0, that is constant
investment opportunities.

The fund divides its assets, 4, between the risky asset and the bank account
with a fraction, =, invested in the former. Liabilities, L, representing the
progressive reserve, changes by the interest rate — hence between accounting
periods indexed by 1, 2, ...

dA; = A,[(r + m;Ao)dt + m0dBy], (t € i+ (0, 1), i € N, Ag>0).
dL, = Ldt, (t€i+(0,1),i e N, Ly>0).

One could allow for additional, non-marketed noise in the processes 4 and
L, but we will impose the simplification that the only source of uncertainty is B,
which is hedgeable. Hence, in line with recent studies, for example Dgskeland
and Nordahl (2008a), we focus on the savings part of the contract, in particular
we disregard mortality.

The pension fund we consider is a mutual with-profits fund, that is one that
is owned by its clients. Also, entry is not voluntary, but governed by, say,
legislation and contributions are fixed. These assumptions imitate real life
with-profits pension funds well. Yet, this ownership structure is non-standard
in the literature and hence our model cannot be directly compared to those of
Grosen and Jgrgensen (2000, 2002); Dgskeland and Nordahl (2008a, b). One
could consider “old” and “new” clients as disjoint stakeholders; owners
respectively customers, but that approach does not fit our purpose; nor does it
reflect actual with-profits pensions systems. The compulsory membership may
imply that some clients will enter on unacceptable terms, since it is likely
preferable to enter a wealthy fund.

The funding ratio is defined as

AAI

F,2— (t1=0).
t L17( )

Since avoiding insolvency is an integral part of intergenerational fairness we
shall require throughout that the fund is always sufficiently liquid — in the special
sense that F> 1+ ¢ for some ¢> —1 representing a minimum acceptable funding
ratio (from the point of view of the fund’s board, but possibly laid down by some
monitoring authority). Hence, we shall denote the surplus assets 4A—L(1 + ¢) the
bonus reserve. We let ¢<=0 — corresponding to liquidation upon insolvency —
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throughout (except in Subsection “Sensitivity analysis”). Any initial bonus
reserve (Fp>14¢) could have come from anywhere, for example as an
inheritance from previous generations or as a subsidy from somewhere else.

In Preisel et al. (forthcoming), the asset process is controlled by choosing
the fraction of wealth invested in the risky asset by optimising one-period
expected power utility of the end-period funding ratio minus one. This criterion
gives rise to a constant proportion portfolio insurance (CPPI) strategy (to be
introduced in Subsection “Investment strategy”) parameterised by the
manager’s coefficient of relative risk aversion, y>0. We, on the other hand,
impose a parameterised investment strategy at the outset and take the clients’
point of view as a basis for optimisation. This disparity is a natural
consequence of our objective being completely different from theirs. For
where their aim is to point out the potential conflict between short- and long-
viewed stakeholders our ambition is the study of optimal design as seen from an
altruistic standpoint.

The fund has a rule of distributing bonus periodically,’ but only when its
funding ratio at the turn of the period exceeds some fixed threshold,
k>1+c¢™, and in that case all funds above the threshold are distributed to
the clients. We shall refer to x as the bonus barrier.

At the turn of an accounting period assets and liabilities are 4;_ and L,_.
Then new contracts are underwritten with value I';L;_, (I';=0) and converted
into liabilities g;[;L;_. The parameter g;>0 measures the proportion of
contributions which is converted into liabilities at time 7.> Due to the presence
of a bonus reserve this parameter may be less than one. Traditionally, this
contribution to the (collective) bonus reserve is not explicit. At the same time
contracts mature with market value IT;L;_, (I1;€[0, 1]). This gives rise to the
end year post bonus funding ratio

_ A+ L (i = T1))

Fie
Li-(1+ gl — 1) 0
Fir- +T; 11 .
S el B N).
1+g;F;—H,~AK’(l€ )

The bonus, b;, that is, in fact, allotted such that Li+:L,-,(e”’—|—giF,~—H,<),
A,’+:Al‘, —‘rL,',(F,'—Hl'), and (1) iS Satisﬁed iS

L . — _ . L +
b,'é (logFl JFl—II(K 1) F,(Kg, 1)) : (i c N).

K

! As an alternative to increasing future benefits the company could pay out a cash dividend. For
an argument in favor of the former approach, see Nielsen (2006).
2 The proportion 1—g; is intended to pay for the bonus option.
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We let g=1 throughout such that if new contributions balance expiring
claims, I''=II;, leaving clients subsidise new clients by their “share” of the
bonus reserve. If new net contributions are positive, I';> II;, existing clients
also subsidise new ones — and if they are negative existing clients also gain from
terminating contracts. We shall assume that I',=I1,=0, (ie N), that is in some
sense the fund is mature. It is indeed relevant to study growing or shrinking
funds, but for our purpose it makes more sense to study the case of balanced
cash flow. Consequently,

F\" .
Fiv = F- ANk, and b; = log7 , (feN).

The described bonus rule is not widespread in the academic world nor in
practice, where there are tactical, strategical, distributional (intergenerational)
and political reasons for smoothing bonus distribution. Rather it is chosen
for technical reasons and because of the results of Steffensen (2004) — and as an
approximation to what is, in fact, practiced.

After settling on a short-term optimisation criterion Preisel et al. (forth-
coming) investigate the properties of the implied stationary distribution of F.
Their aim is to point out the divergence between long- and short-viewed
stakeholders. Concerning the objectives of the present study their model has a
few shortcomings, however. First, their optimisation criterion is inappropriate
for our purpose. Second, they do not discuss the choice of bonus barrier. And
third, their paper does not study the rate at which the system converges
towards stationarity. The aim of this paper is to remedy these shortcomings.
We shall address the first of these reservations by introducing a different,
altruistic optimisation criterion in Sections “Defining fairness” and “Analytical
results”. The second and third points of criticism turn out to be partially
interrelated, and we shall discuss those topics in Section “Defining fairness”
and Subsection “Speed towards stationarity”.

Investment strategy

An investor with assets, 4, and a, possibly random, “floor” on wealth Ly< A
is said to follow a CPPI strategy (introduced by Black and Perold (1992)) with
multiplier o> 0, if his portfolio is self-financing and his absolute allocation to
risky assets at time >0 is a(A4,—L,;). The strategy thus reduces exposure
when the cushion, 4—L, decreases and vice versa. In particular, as the
cushion approaches zero, the allocation to risky assets approaches zero.
Therefore, if paths are continuous, the strategy ensures that the cushion is
always positive.
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As mentioned above, the optimisation criterion of Preisel er al. (forth-
coming) gives rise to a particular CPPI strategy, namely one with multiplier
Ao~ '/y. We shall take a different approach and impose a general CPPI strategy
at the outset. In particular, we use the family of parameterised investment
strategies

A, — L1
ﬂtéa—[ /;( +C)7
t

(1=0, 0>0). (2)
The motivation for choosing this strategy at the outset is that implies a zero
probability of default in the present model framework.’
Under condition (2) the discrete time funding ratio dynamics between
updates has i.i.d. lognormal innovations:

Theorem 1

Fr—(1+¢) :
log| ——————— | =2%;, (i=1).

Here (Z);cn is an iid. sequence with Z;~N(m, s°), (ieN), s2us and
mas(A—s/2).

The main result of Preisel et al. (forthcoming) is their Theorem 4.1, which
states that (F;);en admits a stationary distribution if and only if Z; has a
strictly positive mean. In our case this translates into the condition se (0, 24).
Note that this requirement is independent of the choice of barrier, . s is the
volatility of the bonus reserve, 4—L(1 + ¢), and we will refer to s as “risk”.

Below, we come up with an analytical approximation for the stationary
distribution of the funding ratio.

The contract

To fulfil the purpose of the paper, we consider a contract spanning a period of
length ne N, which can be taken to represent the typical savings period for a

It is not clear by any means that it is optimal for the clients as a whole to impose zero
probability of default. Having fairness as our primary concern it does seem reasonable,
however, to put down this restriction already at the modelling level. An alternative with that
property is to implement an Option-based Portfolio Insurance strategy, which — like the CPPI —
secures a pre-specified lower boundary on portfolio value at the chosen horizon via a put option
on the asset portfolio. For a wholly different approach we may decide to use a “free” strategy
not protecting the excess assets, instead allowing for bankruptcy.
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pension fund client, and with the first contribution made at time M eN (with
“today” being time 0). The contract consists of a set of contributions,
(E()M /", which are determined at time 0 even for a forward starting contract
(M >0), and a terminal benefit W(n). To ease calculations we assume without
losing much realism that there are no expenses (administrative costs etc.)
associated with the contract. The benefit is

1)

11 Y b
W)LY g(M+)EM +j)d"DeT — (0<1<n). (3)
j=0

That is, by the terms of the contract, the contribution at time / is transformed
into a claim at expiry of g()&Ne" ™"~ — and bonus may be added.
Hence, contribution £(/) is not awarded bonus until time /+ 1. Since bonus is —
in part — intended to reflect the return on the contribution it is natural
to refrain from crediting bonus immediately. Typically, either (f)=1(,_ys or
EW=1eqrmr, m+1,... m+np but it is also possible to have, say, an increasing
contribution plan reflecting inflation. The contract can obviously be thought of
as representing a capital pension. The presence of a bonus reserve, however, is
usually linked to an insurance product. Surrender and free policy options are
not considered.

Since the guaranteed interest rate equals the market rate, g=1, and there is
no default risk the contract is an arbitrage. As argued by Dgskeland and
Nordahl (2008a) this does not really pose a problem. The fact that there is
certain return to be earned beyond the guaranteed return of r is a consequence
of the intergenerational subsidisation that built up a bonus reserve in the past.
In other words, the return on the (random) amount A,,_—L,,_(1+¢) that
previous generations, or some external party, made available, is handed over to
the generation entering the fund at time M.

For a provocative setting, essentially suggesting no guarantees whatsoever,
see Sgrensen and Jensen (2001). It seems obvious, however, that this can be a
gateway for managerial malpractice. Also, they are partially countered by
Dgskeland and Nordahl (2008b).

Defining fairness

Fairness between the company and its collective of clients is imposed by
construction, since they form a closed circuit. Our concept of fairness,
however, is an intergenerational one. It is based on the wish that future clients
who, in fact, join the fund at times when it is funded differently will get a
benefit with the same distribution — as seen from today, regardless of the
conditions at the time of underwriting.
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Definition 1 A with-profits pension fund is long-term fair if W(n) is
independent of F, for some forward-starting contract and for each n.

As a way of obtaining fairness we shall require that an invariant distribution
for the funding ratio exists, and further we shall assume that stationarity occurs
in finite time.

Assumption 1 Assume that F is invariantly distributed at time M, or more
formally

VFy->14cIM eN:Vf e R: P(Fy <f) = lim P(Fy <f)y_ -

If no stationary distribution exists the probability of obtaining bonus over
any fixed horizon will tend to zero. It is not completely obvious that this is, in
fact, unsatisfactory to the clients as a whole, but it is clear that it will imply that
intergenerational fairness cannot be obtained.

Theorem 2 Under Assumption 1 the pension fund is long-term fair if and only
if 0<s<2A.

Given the fairness side condition, 0 <s<2A, we wish to find the stationary
distribution of bonus that will satisfy future clients better. To this end we shall
maximise expected power utility of the benefit, W(n). The reason for choosing a
utility criterion over a financial one is that pension contracts are likely non-
tradeable.

The only control we have at our disposal is the “risk”, s, since by stochastic
dominance it does not make any sense to optimise over k; for the higher is k the
better off is any client joining at time M or later (for fixed s), c¢.f. Theorem 3
below. The real trade-off here is between waiting for an attractive funding ratio
distribution (high k) on one side and getting bonus underway and getting to
stationarity quickly (low k) on the other side, c.f. Subsection “Speed towards
stationarity”. Once stationarity is attained no such prioritisation has to be made.

Analytical results

The stationary distribution of F' is not explicitly known; and hence, we shall
study a different Markov chain for which the invariant distribution can be
identified. Following Preisel et al. (forthcoming), we impose

Assumption 2 The sequence (Z;);en is 1.i.d. with Z; Laplace distributed
with location m and scale A~'£5/,/2 (picked to match the variance of the
true Z;).
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Under Assumption 2 the density of Z; is
2
We are not familiar with any continuous time stochastic processes for the
financial market bringing about this dynamics, but shall use the approximation
nevertheless. The assumption may be justified by referring to the fact that this
Laplace distribution is also symmetric about its mean and is constructed to
have the same variance as the true one. Considering the tail behaviour,
however, some differences occur because of the fatter tails in (4). The 4th
central moment is twice that of the true distribution (corresponding to excess
kurtosis of 3), and at higher order, even moments will, of course, differ more.
Notice, however, that such fatter tails comply with some of the criticism of
using normally distributed returns.
To study the quantitative properties of bonus we need the funding ratio prior
to bonus distribution, which has the following stationary distribution function.

exp(—ilx—ml), (x€R). (4)

Theorem 3 Under Assumptions 1 (stationarity) and 2 (Laplace)
G (X)2P(Fy <x)
@(X*(l+tﬁ))/’ 1+c<x<l€€m—(l+c)(em_l) (5)

A \x—(1+4c¢)

: -2
e’ [ x—(1+4c¢ m m
l—iﬂ) (pElici) x>xe™ — (1 +¢)(e" —1).

The parameter p is the non-zero solution to the non-linear equation
1—(p/2)*=exp(—pm). This implies that pe (0, A).

Expression (5) differs from that of Preisel et al. (forthcoming), who mix
Laplace and Gaussian distributed innovations to derive an approximation to
the stationary pre-bonus funding ratio distribution.

Because p and A both decrease in s, the distribution is spread out more the
higher is s (and the higher is x). As the stationary marginal probability of
obtaining bonus is unaffected by k the bonus increases in k. On the other hand
that bonus probability decreases with s, so the conditional bonus increases
with 5. An example of the stationary funding ratio distribution can be seen in
Figure 2.

When we consider the Markov chain obtained via the Laplace assumption
(Assumption 2) the stationary moments of bonus can be derived. They turn out
to be expressed in terms of hypergeometric functions (see Weisstein, 2008),
which can be evaluated precisely and quickly. The second moment can only be
derived when ¢=0. Therefore, we shall only calculate the moments of b,,
explicitly in that case.
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Theorem 4 Under Assumptions 1 (stationarity) and 2 (Laplace) all moments
of b, exist, and for ¢=0

Efbuy =22 (1) [t (o, (- D" 4 1) — Hip, )

lpe/lm ; . . P
T+ (k = 1)"Hi (=4, (k = 1)" + 1) —Ilog;c.
A= - m
E{bifl} :%(K - 1) p[H2(p7 (K - 1)(’ + 1) - HZ(pv K)]
i Am .
S b= (=, (k= 1) 4 1)

- g (log K)* — 2log KE{by}.

The functions H; and H; can be found in the Appendix.

A simple contract

Analytically we shall, for technical reasons, only consider the contract
consisting of a single unit of contribution initially (at time M) transformed
into a benefit at time M +n of

v - (00

k=1

that is a contract with £(f)=1(,_,r, and g(M)=1. Due to the presence of serially
correlated bonuses, W(n) has a complicated distribution that we cannot
explicitly derive. Instead we shall impose two additional assumptions to
facilitate a semi analytical solution. First, we approximate the serial correlation
of (bary)i=o by analysing the unrestricted underlying random walk with
positive drift (Zy, Z,+ Z>, ... ):

Theorem 5 Given Assumption 1 (stationarity), and assuming that
Viz0:(bar 4 ilbarbar 4 > 0) are identically distributed.

E{babrri1} = E{brr}>P1/P(by>0).
E{babrria} = E{bp}? <ZZ + Ij) JP(by>0).

P; P} PP
E{barbaris} = E{bu} <73 +3+ ‘2 2>/P(bM>0),

where P]é H:D(Zl + - +Z/<0), (]> 1)
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Remark 1 To reduce the number of factors in our expressions below we
choose to stop at three moments in Theorem 5. If desired one could include
further moments to improve accuracy.

In order to proceed, we need to estimate the higher order serial correlations.
To this end assume the following decay:

Assumption 3
CO""{bM+i§ bM+j} - Po,lq(/_i)_], (j>i=0).
piJ.éCOVV{bMJri; bM+j}a (i,j€N).

gafos
Po,2

Remark 2 For the tail behaviour we used ¢ — the relationship between step-3
and step-2 covariances. This implies that neither step-2 nor step-3 covariance
contribute with our best estimates for them. This simplification does not matter
much, though, and can be easily remedied.

Theorem 6 Under Assumptions 1 (stationarity) and 3 (correlation decay

pattern)
I}(n)é\/{zn: bMH}/n
i=1
2 o n
(225 5) o

Notice that n— F(n) is increasing because ¢ (0, 1). To get an analytical
expression for the optimisation problem we will also need a distributional
assumption for the aggregated bonus. The computationally convenient choice
is the normal distribution, which is also asymptotically correct by the central
limit theorem. For finite horizons, however, it will be flawed by the artificial,
negative value space. Nevertheless, we settle on that assumption:

Assumption 4

y barsi ~ N(nE{by}, nV(n)), (n>1).
-1

I
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To measure the merits of a particular contract we employ expected
discounted power utility using a deterministic, integrable consumption
discounting process (v,),>¢, that is the maximisation object is

[E{e I u} y € 0,000\ {1},

I—y

Uy (W(n)) & i (6)
[E{e_ J v’d[logW(n)} y =1

Since v and r are deterministic, maximising (6) is equivalent to maximising

expected power utility of
Xeew (z bM+k>,

k=1

that is we can disregard v, r and the passing of time — and assume that the
aggregated bonus, X, is received immediately. This is a special feature of
the particular utility functions used here. We formalise this notion as

Theorem 7 Given Assumptions 1 (stationarity), 3 (correlation decay pattern)
and 4 (normality), maximising expected discounted power utility (with relative
risk aversion ye[0, oo]) of the benefit W(n) is equivalent to maximising the
certainty equivalent bonus

11—y 4
bee 2 E{by} *T/ P (n).

Remark 3 If y=1 or n=1 only Assumptions 1 and 2 are required.

Remark 4 The maximisation object we have chosen is standard, but notice
that it implicitly considers the contribution as sunk cost (else X—1 is the
appropriate object).

Optimisation

We will now apply Theorem 7 to find the optimal s in various cases and analyse
these. Throughout this section we will keep A=1/4 (having periods of 1 year in
mind). We consider variations in the length of the contract (n), the bonus
barrier (), and the coefficient of relative risk aversion (y).

Power utility
The first observation from Table 1 presenting the optimal risk is that it does
not vary very much with x nor with n (except at high levels of risk aversion).
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Table 1 Optimal risk(s) based on analytical approximation
K n y

0 0.5 1 2 5 10

1.1 1 0.277 0.275 0.273 0.268 0.254 0.231
1.1 10 0.281 0.277 0.273 0.264 0.236 0.194
1.1 30 0.283 0.278 0.273 0.261 0.226 0.178
1.1 50 0.284 0.278 0.273 0.261 0.224 0.175
1.2 1 0.276 0.273 0.269 0.262 0.239 0.201
1.2 10 0.283 0.276 0.269 0.254 0.207 0.150
1.2 30 0.287 0.278 0.269 0.250 0.193 0.133
1.2 50 0.287 0.279 0.269 0.249 0.190 0.130
1.3 1 0.276 0.272 0.267 0.258 0.227 0.181
1.3 10 0.284 0.276 0.267 0.247 0.187 0.125
1.3 30 0.289 0.279 0.267 0.241 0.171 0.110
1.3 50 0.290 0.279 0.267 0.240 0.168 0.107

When y<1 the increased V (n) that results from a longer contract implies
higher optimal risk — and oppositely if y>1. As can be seen from Theorem 7
this is a concavity effect. Similarly, at the lowest values of y an increase in k will
induce higher optimal risk — and oppositely if y is higher. In this case, the
reason is that higher levels of x are associated with relatively more variable
outcomes than are lower barriers. As expected the optimal s is decreasing in y
(because V (n) increases with s, at least over the relevant range).

It is quite remarkable that even risk neutral clients prefer investment
strategies, which are only modestly aggressive, far less than the upper
boundary of 0.5. Apparently, the fat right tail of the stationary bonus
distribution associated with aggressive investment strategies does not
sufficiently compensate the lower marginal probability of obtaining bonus.

The classical Merton (1969) analogy to s is A/y, which would be oo, 0.5,
0.25, 0.125, 0.05 and 0.025, respectively, in the rightmost columns of
Table 1. Also, in the case of Merton (1969), horizon does not matter when
investment opportunities are constant, but in our case # is clearly important
(especially at high levels of risk aversion) because bonus is positively serially
correlated, so that V (n) increases with n. Altogether, except at y=1 the
difference is enormous. This should come as no surprise since the problems are
very unlike.

Seemingly, the choice of barrier, , is not so important for low and moderate
levels of risk aversion, since the optimal s varies only little with this parameter.
As regards the implied investment strategy this is true, of course, but the
certainty equivalent bonus (not shown) differs very markedly across x, that is
in stationarity it is preferable to have a higher barrier because conditional
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Figure 1. Certainty equivalent bonus as a function of s for y=0.5 (full line) and y=2 (dotted line).
Fixed parameters: k=1.2, n=30.
Note: Based on analytical approximation.

bonus increases with x, whereas the marginal probability of obtaining bonus is
not affected by this parameter.

Most optima are in the range (0.2,0.3); implying that for a risky asset
volatility, o, of less than 20 per cent, the bonus reserve should be geared since
then a=s/o > 1.

Figure 1 shows the mapping s— bcg for a certain parametrisation, but its
appearance is quite representative across a broad range of configurations. The
main insight is that it is not very steep around its maximum, implying that it is
not overly important to evaluate y correctly. In the example from Figure 1,
when y=2, the loss of terminal benefit from choosing s=0.3, rather than the
optimal s=0.25, is far less than 1 per cent over 30 years. As discussed in the
Introduction, entry to the pension fund provides an arbitrage, and therefore
the certainty equivalent bonus is strictly positive.*

Mean—variance utility
It may be hard to be very specific as to your choice of utility function. To this
end, as a pedagogical tool, we show in Figure 3 the mean—variance diagram,

* But when using the normal approximation it needs not be so, of course.
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Figure 2. Stationary funding ratio distribution. Fixed parameters: k=1.2.
Note: Horizontal lines indicate P(F,,_ <x)=P(b,,=0). Based on analytical approximation.

which will provide the set of optimal strategies for any agent with increasing
utility of the mean and decreasing utility of the variance of aggregated bonus,
and preferences over these two quantities only. One very useful insight
conveyed by Figure 3 is the existence of investment strategies inducing
stationarity, but which are mean—variance-inefficient. For as can be seen, as s is
increased above a certain limit (depending on the parameters) the outcome
worsens drastically. This phenomenon is also evident with power utility, c.f.
Figure 1. The reason is that the previously mentioned trade-off between
frequent and large bonuses, which was illustrated in Figure 2, tips in favour of
more cautious strategies from a certain level of s because the bonus probability
decreases too fast, or equivalently, the conditional bonus improves too slowly.
In turn these characteristics, combined with the serial correlation, which also
increases with s, translate into fatter tails of the benefit for more aggressive
investment strategies. Figure 4 demonstrates this point, and thus implies how
very adverse (as well as very favourable) outcomes are much more likely as
risk increases. For a lengthy discussion of this important concept of being
trapped at low funding levels, see Preisel et al. (forthcoming). Finally, notice
that the normality assumption was not used to produce Figures 3 and 4.
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Figure 3. Mean—variance diagram for X. Fixed parameters: k=1.2, n=30.
Note: The labelled points indicate various values of 5. Based on analytical approximation.
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Figure 4. Distribution of X. Fixed parameters: k=1.2, n=30.
Note: Horizontal lines indicate P(X'<1). Based on analytical approximation.
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Limitations and accuracy

In Section “Numerical results”, we will provide support for the conclusions
above by performing Monte Carlo simulation of the true dynamics. Applying
this technique, we shall also find the optimal risk for a contract with several
contributions. Further, the convergence of the funding ratio is analysed.

Numerical results

The simple contract considered above has a single contribution only, and is
thus quite dissimilar to real life contracts. In this section, we shall meet this
shortcoming by numerically maximising the expected power utility of a
contract with several contributions. Also, we will provide support for the
analytical approximation from the previous section. We start out by doing
the latter in Subsection “Comparison to analytical results”. Then, in Subsection
“A complex contract” we will identify the optimal design of contracts with
several contributions. Subsection “Sensitivity analysis” briefly touches upon
the dependence of the results towards the choice of model constants ¢ and A,
whereas Subsection “Optimal strategies” discusses the optima. The rate at
which the system converges is discussed in Subsection “Speed towards
stationarity”.

Throughout we impose no approximations, except for using a finite state
space rather than all of Q. Our preferred tool in this section is Monte Carlo
simulation, which is described briefly in Technical description of the Monte
Carlo simulation section.

Comparison to analytical results

We shall now assess the overall quality of the analytical approximation by
simulating the true dynamics using Theorem 1. First, the optima are compared,
and afterwards, to explain the differences encountered, we look at the
distribution of X.

Power utility optima
First, in Table 2 we provide optima comparable to those in Table 1. The
comparison is quite uplifting; the difference in optimal allocations is less than a
few percentage points except at high risk aversion, where the previous optima were
too low. The main cause for this discrepancy is the fact the value space for X was
extended below 1 by matching two moments only (i.e. probability mass was
moved quadratically). Such transformation will make aggressive investment
strategies appear artificially unattractive when the utility function is very concave.
Consequently, the true optima differ far less across y than did the
approximate ones which makes it easier to embrace individuals with different
appetites for risk in a common investment policy.
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Table 2 Optimal risk(s) based on simulation of true process as a percentage of the optima in
Table 1

K n Y

0 0.5 1 2 5 10
1.1 1 99 99 99 101 102 106
1.1 10 98 98 99 99 104 115
1.1 30 99 98 98 98 102 114
1.1 50 100 99 98 98 100 110
1.2 1 99 99 100 99 103 117
1.2 10 99 99 99 101 111 132
1.2 30 100 99 99 99 109 130
1.2 50 102 100 99 98 106 125
1.3 1 99 100 98 100 107 122
1.3 10 100 99 99 101 116 146
1.3 30 102 100 99 100 115 143
1.3 50 104 101 99 98 111 136

The optima can be backed out using Table 1.

At the outset it is not obvious if short or long contracts are optimised more
precisely when applying the analytical approximation. The longer the contract
in question the better the normality assumption (Assumption 4) works.
Oppositely, the correlation assumption (Assumption 3) is worse for long
contracts because the correlations decay slower than at rate ¢g. From Table 2,
we conclude that longer contracts are estimated more precisely, that is the
normality assumption matters more (at least for the levels of risk aversion
where the errors are more serious).’

The qualitative conclusions from the previous section regarding n, x and y
hold true.

The quality of the analytical approximation

In terms of optima, we are pleased with the quality of the analytical
approximation. The assumptions were made at a more primitive level,
however, and we shall go to that to explain the deviations encountered. To
this end consider Figure 5 comparing the true (simulated) distribution of X
to that obtained via the analytical approximation. Clearly, the normality
assumption (Assumption 4) brings about a rather substantial difference

5 In making this conclusion, we disregard the case n=1 where the variance of X is only
approximated via Assumption 2 (Laplace).
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Figure 5. Distribution of X. Fixed parameters: s=0.25, k=1.2, n=30.
Note: Horizontal lines indicate P(X'<1); vertical lines show E{X}.

between the two by artificially extending the support of X below one. In
fact, informal experiments indicate that almost the entire difference
between the two distributions in Figure 5 stems from that assumption,
whereas for reasonable values of horizon, n, the effect of the approximation
regarding serial correlation (Assumption 3) is only of second order. This
holds in spite of the latter assumption drastically reducing the true variance
of X and thus contributing to lighter tails than the actual ones. Finally,
the Laplace assumption (Assumption 2) is rather innocuous — it brings
about slightly fatter tails, thus partially offsetting the aforementioned
error.

A complex contract

In this section, we will find the optimal risk for a contract with contributions in
every period. This construction implies that later bonuses are more important
than earlier ones because they “act” on a larger amount. We assume that the
contribution vector is

EL(1, exp(i), ..., exp(in))
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Table 3 Optimal risk(s) with net contribution inflation x=0.1 as a percentage of the optima with
x= —oo (the simple contract, c.f. Table 2)

K n y

0 0.5 1 2 5 10
1.1 10 99 100 101 102 106 110
1.1 30 99 100 101 103 107 112
1.1 50 98 100 101 103 107 113
1.2 10 99 100 102 104 112 121
1.2 30 98 100 102 106 116 127
1.2 50 97 100 103 107 118 129
1.3 10 98 100 103 107 118 131
1.3 30 96 100 103 110 125 141
1.3 50 95 100 104 112 128 145

The optima can be backed out using Tables 1 and 2. Based on simulation of true process.

for some fixed contribution inflation, i€ R. Then the terminal benefit is

n n
Win) =Y exp|ij+(n=r+ D b
j=0 k=j+1

with x£i—r denoting contribution inflation net of interest. We perform the
same simulations as above and calculate expected power utility of W(n). For
illustrative purposes, we use the admittedly high net contribution inflation
x=0.1, but the qualitative conclusions hold for x=0 as well.

The optima are shown, indirectly, in Table 3. It turns out that the
consequence of increasing net contribution inflation, x, is similar to the effect
of reducing n: At low risk aversions (say y<1/2), the optimal s decreases
as x increases and oppositely at y>1. The simple explanation for this is that as
x increases more emphasis is put on the last bonus allotted, and thus on the
marginal properties of F, whereas the serial dynamics matters less.

Finally, notice three further points about the optima. First, at low levels of
risk aversion the differences between x= — oo (the simple contract) and x=0.1
are small. This is because for such agents it is almost exclusively the mean
bonus that determines expected utility. Consequently, the analytical approx-
imation can be applied with high accuracy to this, somewhat different, problem
as well. Second, and for essentially the same reason, the more risk-averse
clients’ optima increase substantially — in turn making it even more “feasible”
to pool individuals with different attitudes towards risk in a common
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investment policy. Third, the implied loss of certainty equivalent from
choosing a slightly suboptimal s is almost zero because the distribution of X
is relatively much narrower when there are several contributions.

Sensitivity analysis

The optimisations above were all performed with a fixed market price of risk,
A=1/4. In practice, it is not widely agreed what the magnitude of this quantity
might be. Therefore, we shall briefly investigate how the results depend on that
vital parameter. Also, pension funds may exist in regimes differing w.r.t.
liquidation rules. Hence, we also examine how our results are affected by
choosing a non-zero constant for ¢. As ¢ can probably be observed for every
entity this part of the sensitivity analysis does not relate to the insecurity in
applying the results; rather to the optima’s robustness towards different
environments. We have fixed n=30, kx=1.2 in this subsection. For simplicity, we
perform the sensitivity analysis for the simple contract only.

As expected the magnitude of the optimal s is very sensitive towards the
return/risk-relationship of the financial market. We will not provide the full
results, but with y=0 one gets the optima 0.223, 0.287, 0.356 at 4=0.2,0.25,0.3,
respectively. Similarly, at y=10 the optimal s varies almost as radically, being
0.148, 0.174, 0.199, respectively, for the market prices of risk 41=0.2,0.25,0.3.
Clearly, as opposed to the classical rule of Merton (1969), optimal allocation to
risky assets is not exactly linear (for fixed y) in the market price of risk, 4.

Increasing ¢ corresponds to operating closer to the boundary — ceteris
paribus. Therefore, the effect of increasing ¢ is similar to that of lowering x.
Notice, however, that both k—(1+¢) and (k—(1 + ¢))/k matter, so no direct
translation can be made. The numbers confirm this conjecture and are
available upon request.

We have not analysed the quality of the approximation in its own respect
for different parameterisations, (c,41), but we have no reason to believe that
this choice should change the characteristics of the deviations in any
substantial manner. Regarding the parameter ¢, it is not even possible to
perform our analytical approximation unless ¢=0; hence no comparison can be
made.

Optimal strategies

Following the discussion initiated in Subsection “Optimisation”, it is
interesting to see which strategies, if any, are unlikely to ever be optimal.
Casual studies show that across extreme parameterisations; y=0, ¢=-—0.2,
k=1.5, n=100 and A4<0.4 one gets an optimal s less than 0.85-24.
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Also, for reasonable values of y the optimal s is far above zero. But by taking
y sufficiently high, one can, of course, get an optimum as close to zero as
desired.

Hence, we can at least conclude that within this model s>0.85-24 are
highly unlikely to be optimal for any client. This modest upper limit is
astonishing, as it easily induces stationarity. In most reasonable cases we
are even further from the upper limit. The reason is, of course, that the implied
stationary distribution becomes unattractive as s approaches 241 — as discussed
above.

Speed towards stationarity

Assuming that it is desirable to obtain fairness via stationarity it is conceivably
also attractive to approach such invariance as quickly as possible. For if
stationarity is approached too slowly, today’s clients will not even approxi-
mately sample the same distribution as will future clients. And in that case,
stationarity is, more or less, in vain.

Casual experiments suggest that for low initial fundings stationarity is
approached quicker with high values of s (even though the implied limiting
distribution is more spread out, c.f. Theorem 3), whereas for high values of Fj
choosing s low results in the faster move towards the invariant distribution.
The reason for this is partly the fact that the mean and variance of the
innovation to the funding ratio process from Theorem 1 are both proportional
to s. And in part the characteristics of the invariant distribution of Theorem 3,
which is spread out as s increases.

Naturally, there is no connection between swift approach towards a
particular stationary distribution and the desirability of that outcome.

The simulations also confirm the presupposition that the stationary
distribution is approximately realised quicker when (Fy, —(1 + ¢))<(k—(1 + ¢))
is not too low, nor too high. This ratio, however, does not affect the limiting
convergence rate, which is determined by s solely.

As an example, see Figure 6 showing — at a certain parametrisation — how
the stationary distribution of the funding ratio is approached rather quickly.

The rate at which a stationary Markov chain moves towards its invariant
distribution can, in fact, be bounded analytically. To this end see for example
Baxendale (2005).

Technical description of the Monte Carlo simulation

The simulations were done in the freeware statistical computing package R. To
evaluate the hypergeometric functions we have used the package hypergeo. The
approximated stationary distribution of F (from Theorem 3) was stratified
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Figure 6. Funding ratio distribution at ze{l, 30, 50, co}. Fixed parameters: s=0.25, x=1.2,
Fy, =1.05.
Notes: Horizontal lines show P(F, . <x)=P(b,=0). Based on simulation of true process.

using a trapezoidal method. To get a proxy for the true stationary distribu-
tion we did 200 Gaussian steps ahead from that stratified distribution.®
Then, we simulate the funding ratio process a further n periods ahead to
estimate X.

Setting the seed manually allows all results to be reproduced. Throughout we
did 100,000 trials. The value space for s was approximated by the set of
equidistant points {0.001, 0.002, ..., 24—-0.001}.

Concluding remarks

The bonus option

An important issue is whether or not to include the bonus option on the
liability side of the balance sheet. From a strictly legal point of view one can
absolutely argue in favour of excluding the option, since pension funds are

© For virtually any choice of (s, x) 200 steps seems to be more than enough — based on the
distance between consecutive (pre-bonus) funding ratio distributions — to get an invariant
distribution. In fact, the improvement after 20 steps is negligible for most parameter sets and 50
steps seems to be enough for almost all reasonable parameterisations. Starting from a fixed
funding ratio, on the other hand, a comparable result requires far more time steps.
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rarely strictly obliged by law to follow a particular bonus policy, even if it has
been made public. Grosen and Jgrgensen (2000) call this a counter option
(held by the company). In addition, rules are subject to change for legal,
political or strategic reasons. However, if the bonus option is disregarded,
the principle of equivalence states that we must have g=1 for the set of pure
savings contracts defined by (3). Alternatively, one could take a more
pragmatic approach to accounting to justify the choice of some g<1 without
explicitly regarding the bonus option. It would imply that new entrants
contribute explicitly to the bonus reserves, even though they hold no strict
statutory claim on it.

Policy implications

To apply the results one must first choose k. This choice is a trade-off between
obtaining a desirable stationary distribution (high x) and attaining fairness
quickly (low k). After picking representative values for contract length (),
relative risk aversion (y) and possibly net contribution inflation (x) one only
needs to estimate the volatility (¢) and market price of risk (A) of a suitable
portfolio of risky assets.

The implied optima from cases with very unlike values of y (and/or n) are not
very different. Further, the implied difference in utility between quite different
values of s is relatively modest which makes it possible to embrace such
different attitudes towards risk (and possibly different horizons) in a common
investment policy. For such an enterprise s=4 seems to work well as a crude
approximation. Alternatively, one could set up separate funds for individuals
with varying appetite for risk.
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Appendix

Proofs
Proof of Theorems 1, 2 and 3. Available upon request.

Proof of Theorem 4 To see that any moment of b;, exists let n>1,
£e€(0, (1A A)/n). Then y°/e>logy,(y > 0). Hence,

lim /(X -1+ c))—/l—l(logx)”dxés‘n lim [ (x—(1+ C))_;V_lx*’”dx

X—00 X—00
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To derive the moments define for ¢#0, je N and x> 1
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where F;; denotes the generalised hypergeometric function, c.f. Weisstein (2008).
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Similarly,

[E{b} /logx/;c )2dG) (x)
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PlOOf of Theorem 5 Let (Z;) be an ii.d. sequence. For ie N introduce
Alog( el ) satisfying the recurrence Y;, =(Y,—Z;, ;)" . Define

J
52— Z , (=1).
PiEP(S;>0), (j=1).
LAP(S =0, ..., 8 10, 5;<0), (i=1).

II>

i‘clv’, <1).

J=1

P; gives the probability that the underlying, unrestricted random walk, S, is
positive j periods ahead. 7; is the probability that the unrestricted random walk
stays positive before time j and goes negative (for the first time) at time j. Given
we start at full funding, Fyy . =« and thus Yy=0, it is also the probability that
bonus is awarded at time j, but not at times 1, ... ,j—1. () is the probability
generating function for the (non-delayed) regeneration time of Y with density
(7j);. By differentiating 7(-) and evaluating at zero we obtain the well-known
relation

7t =10(0), (€ N).
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Further, by Theorem 1 of Feller (1971, p. 413)

1(s)21 —exp(—io: ;P,-), (0<s<1).

J=1

Differentiation of this expression yields

.
Il

1 (s Zs’ Pt (1—(s)) > (= 1)y 2P
j=2
¥(s) Zy Pi—2W(5)Y (- 1) P
j=2
(1=2(s)> (= 1ii—-2)5P,
j=3

And evaluating at 0 yields

T1:P1.
o )
2—72 .

2P; + P} — 3P P>
T3 = .

6

Now consider the convolutions
FIRAP(T +...+T;=k), (k=j=1),

where 7 :Q2— N is the ith non-delayed regeneration time for Y, (ieN ). The
T ; are 1.1.d. according to (1;);>,. Hence, F */(k) is the probability that the jth
regeneration (and thus the jth bonus) occurs at time k. Writing the
convolutions in terms of the 7;s gives

FU(k) = 1, (k=1).

k
FA(k) =Y F V(i) y, (k=j>1).

i=1
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In particular,

1
Z F*J(l) =1 :Pl.
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2 2
* 2 2
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3
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Writing the “joint bonus probability” in terms of the convolutions yields

P(beM+i>0)/[FD(bM>O):[FD(FM> :F(MH')‘ :K)/P(FM< ZK)
= P(Fisag = &[Fars = x)
=P(T,=i)+ - +P(T1+---+7T,=1)

i

_ZF*] l>1

Finally, use the assumption that Vi=0:(bys /basbar, > 0) are identically
distributed. For then, since (b/|b3br ;) 1s independent of (b, i1babar i > 0)
(due to regeneration at b,,>0), we may calculate

[E{beM-H} = P(beM+, > O)E{beM+,‘beM+, > 0}

= P(beM+,' >0)|E{bM|beM+,‘ >0}
[E{bM+j|beM+j>0}

_ E{bw} \?
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J=1

Proof of Theorems 6 and 7. Available upon request.





