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Abstract

The benefits that members of with-profits pension schemes obtain
are determined by the scheme design and the controlled funding level at
the time of entry. This paper examines efficiency and intergenerational
fairness of with-profits pension schemes.

1 Introduction

The price of a traded security reacts promptly to changes in the fundamental

determinants of its value. As opposed to this, in spite of fair value accounting

standards, the price of entering a with-profits pension scheme is typically

fixed, regardless of changes to the financial outlooks for participation.

The manifestation of this paradox is that members contribute equally to

the collective bonus reserve – even when their prospects for enjoying it are

vastly different. In particular, the value of the implicit, compound bonus

option that comes with membership depends substantially on the (random,

yet controlled) funding ratio at the time of entry. This difference is a source

for systematic intergenerational redistribution, which may be seen as unfair.

The aim of this study is to discuss and quantify the loss of efficiency associ-

ated with imposing bounds on the pension fund’s design in order to achieve a

certain degree of intergenerational fairness. Or reversely put: to analyse the

loss of fairness stemming from restrictions imposed for the sake of reaching a

specific level of efficiency. This trade-off should be of utmost importance to

any regulator or altruistic board. In order to discuss the problem we consider

a with-profits pension scheme that does take intergenerational redistribution

into account, thereby constraining scheme design.
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In a pension context intergenerational redistribution has – to our knowledge

– been addressed mainly by Døskeland and Nordahl (2008). Their model,

however, is so vastly different from the one presented below that comparison

is futile. They conclude that it is unfavourable to take part in the accumu-

lation phase of a pension fund, and vice versa. One particular distinction

between Døskeland and Nordahl (2008) and the model of the present paper

is that they consider overlapping generations explicitly whereas we deal with

disjoint generations. Overlapping or contemporary generations can easily

be studied within this paper’s framework, however. Hansen and Miltersen

(2002) also briefly discuss redistribution between different generations in the

presence of a collective bonus reserve.

There is a rich literature – initiated by Briys and de Varenne (1994) – on

the related problem of constructing contracts that are fair between owners

and policyholders as a whole. That setup could be interpreted as imposing

intergenerational fairness, albeit in a rather different way from what we have

in mind. Also, none of those papers distinguish between the set of fair

contracts (because they value under a unique equivalent martingale measure

this would not make sense).

1.1 Outline

Section 2 introduces the underlying mathematical model. The measurement

of fairness and efficiency is discussed in Section 3, where some optimisation

criteria are subsequently suggested. These criteria are illustrated through

Monte Carlo simulation in Section 4, while Section 5 considers an extension of

the model, which reduces redistribution markedly. Finally, Section 6 provides

a discussion of the preceding modelling and results, and gives concluding

remarks.

2 Model

We consider a pension fund, which is owned by its present members. The

board, which designs the scheme, represents future entrants as well, although

these have no formal stakes in the scheme yet. Thus, the board can be

seen as a device for solving the coordination problem that arises in any
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intergenerational enterprise. Such fairness motives are non-standard in the

literature, but highly relevant from a practical perspective. Recently, the

concept has regained popularity through the book by Akerlof and Shiller

(2009).

Rather than starting from scratch the framework of Kryger (2010) is used,

but as opposed to that paper the concern is with the finite time properties

of the system. The model is summarised below, and Section 5 introduces

various extensions that were not dealt with in previous work.

The market values of the scheme’s assets and liabilities at time t ≥ 0 are

denoted At respectively Lt, while the funding ratio is derived as F , A/L.

Between reporting periods, indexed by 0, 1, 2, . . . , the asset value follows the

controlled process

Ai > 0, dAi+t = Ai+t ((r + πi+tΛσ) dt + πi+tσdBi+t) , (i ∈ N0, t ∈ [0, 1)) ,

where r is the constant risk free interest rate, Λ > 0 the constant market price

of risk, σ > 0 the constant market volatility, and π the time-varying, con-

trolled proportion of assets allocated to risky assets. B is a one-dimensional

standard Brownian motion on a probability space (Ω,F,P) driving the fi-

nancial market, which is frictionless and complete as seen from the scheme’s

point of view. Individuals are assumed, however, to have limited access to the

financial markets. In particular, an individual’s guaranteed future benefits

cannot be sold or pawned.

In order to avoid insolvency it is required that funding is strictly above one

at all times. Hence, we assume that F0 > 1, and that the investment strategy

is Constant Proportion Portfolio Insurance (CPPI), that is

πt = α
At − Lt

At
, (t ≥ 0),

where the so-called multiplier, α > 0, is chosen by the board. Liabilities

develop deterministically between reporting times:

Li > 0, Li+t = Lie
rt (i ∈ N0, t ∈ [0, 1)) .

Consequently, the funding ratio process follows the discrete time controlled

Markov process

F0+ > 1, Fi− =
(
F(i−1)+ − 1

)
exp(Zi) + 1, (i ∈ N), (1)
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where (Zi)i∈N is an i.i.d. sequence with Z1 ∼ N
(
sΛ− s2/2, s2

)
, and s , ασ

is denoted ”risk” as it measures the volatility of the bonus reserve, A− L.

At the end of each accounting period, between times i− and i+, benefits fall

due, new contributions are paid in, and members are awarded bonus. This

brings about jumps in asset and liability values, and consequently in the

funding ratio. These three types of updates are as follows:

Πi ∈ [0, 1) denotes the proportion of existing liabilities paid out as ben-

efits (e.g. expiring policies), and similarly, Γi ≥ 0 is the amount of new

contributions (e.g. new underwritings) relative to existing liabilities. These

contributions are converted into liabilities giΓiLi− for some gi > 0, which

is the proportion of the contribution that buys guaranteed benefits. Hence,

1−gi is the share that – implicitly - buys a compound bonus option. Finally,

existing liabilities, Li− , are increased by a bonus factor exp(bi) ≥ 1, which is

determined by using all assets in excess of κLi− , for a bonus barrier, κ > 1,

to enhance guarantees. This barrier is also determined by the board.

With the prescribed approach one arrives at the post bonus funding ratio

Fi+ =
Ai− + Li−(Γi −Πi)
Li− (1 + giΓi −Πi)

∧ κ

=
Fi− + Γi −Πi

1 + giΓi −Πi
∧ κ, (i ∈ N). (2)

The bonus, bi, that is in fact allotted such that

Li+ = Li− ((1−Πi) exp (bi) + giΓi) , Ai+ = Ai− + Li− (Γi −Πi exp (bi)) ,

and (2) is satisfied, is

bi =
(

log
[Fi− − Γi (κgi − 1)]+

κ−Πi(κ− 1)

)+

, (i ∈ N). (3)

Note that the new contributions do not earn bonus immediately, whereas

existing contracts are credited. As bonus is, partly, intended to pay for

disposable capital, this is only natural.

In this paper we consider contracts, in which members contribute the nominal

amount ξ(t) = e(η+r)t at time t, for some ”net contribution inflation”, η. This

is converted into a guaranteed benefit at horizon time n ≥ t of gtξ(t)er(n−t)

with present value gtξ(t) – plus a compound bonus option. The object of
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interest is the (to individuals) non-tradeable, discounted terminal benefit

X , e−nr
n∑

j=0

gjξ(j)er(n−j)e
∑n

k=j+1 bk

=
n∑

j=0

gje
ηje

∑n
k=j+1 bk . (4)

If necessary, we will equip X with arguments (s, κ, F0+) representing the

”risk”, the bonus barrier, and the initial funding ratio respectively.

Contributions are compulsory, and there is no free policy option nor any

surrender option. This leaves no scope for speculation (via timing of contri-

butions or lapses) against the scheme, i.e. the other members.

Actual life insurance contracts give rise to interest rate risk, which is hedge-

able in competitive markets, and mortality risk. Also, benefits are typically

not received as a lump sum. While none of those factors are considered X

can be seen as a proxy for the value of a whole life annuity bought at market

terms at time n.

In order to consider intergenerational redistribution we use the rule gi = 1

for all i. Section 5 explores the consequences of applying other rules. Also,

we assume that inflow and outflow match exactly, that is Γi = Πi for all i,

except in Section 4.2.1.

Administrative costs, transaction costs, taxes, etc. are disregarded through-

out.

From (4) we observe that it is the release of bonus that will govern the

outcome. Therefore, the properties of bonus are discussed next.

2.1 Properties of bonus

In order to analyse the scheme consider the time until next bonus, as seen

from an arbitrary time i ∈ N,

τ(θ; s) , min {j ≥ 1 : bi+j > 0|Fi+ = (κ− 1)θ + 1}, (θ ∈ (0, 1], s > 0) ,

where θ measures how far the funding ratio is from the bonus barrier. With

this specification the choice of κ will not determine when bonus is awarded,

c.f. (1) and (2). The continuous version of τ is the stopping time

τ̃(θ, s) , inf
{

t > 0 : Bt ≥ − log θ

s
+ t (s/2− Λ)

}
, (θ ∈ (0, 1), s > 0) .
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Due to discrete time sampling of the funding ratio

τ ≥ dτ̃e ≥ τ̃ ,

but the approximation error is fairly small, when the barrier is ”distant”, or

the investment strategy is cautious, i.e. θ or s is low (or if time is measured

in ”small” units).

Proposition 2.1. The distribution function of τ̃(θ, s) is

Φ
(

log θ

s
√

t
+
√

t(Λ− s/2)
)

+ θ
s−2Λ

s Φ
(

log θ

s
√

t
−
√

t(Λ− s/2)
)

, (t > 0).

For s ≤ 2Λ this is an inverse Gaussian distribution, but otherwise τ̃ is

defective.

A mere focus on the time until the first bonus allotment certainly has its

shortcomings, but it is a nice way of illustrating that cautious strategies

(corresponding to low values of s) are dominated on short horizons (in par-

ticular if initial funding is low), essentially because of the near-absence of

downside risk. On longer horizons cautious strategies are more attractive,

precisely because of downside risk. To realise this one must study τ(1, s), the

time between bonus allotments, which exhibits negative first order stochas-

tic dominance with respect to s, i.e. smaller values of s are preferable. Its

distribution can be calculated exactly via the method in Jarner and Kryger

(2009), and is shown in Figure 1 for four different investment strategies.

A natural supplement to the properties of bonus allotment is the (one-step)

conditional bonus distribution:

Proposition 2.2.

P (bi+1 ≤ y |Fi+ = (κ− 1)θ + 1, bi+1 > 0)

= 1−
Φ

(
Λ− s

2 + s−1 log θ − s−1 log κy+κ−1
κ−1

)

Φ
(
Λ− s

2 + s−1 log θ
) , (y > 0) . (5)

The conditional distribution in (5) exhibits first order stochastic dominance

in s (and κ and θ), so that higher values are preferable.

Altogether, cautious investment strategies do not give rise to much bonus

on short horizons, especially if initial funding is low, whereas on longer hori-

zons the matter is more ambiguous – but with both very cautious and very
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aggressive strategies inducing only little bonus. As for the barrier – when

initial funding is (κ − 1)θ + 1, higher barriers are always preferable. The

board could, however, encounter a fixed initial funding, and be asked to set

a barrier subsequently, which would complicate matters. This is because, for

short horizons, more bonus would be given with low barriers, in particular

if initial funding is low. But as the horizon increases higher barriers again

become more attractive.

For both design parameters one should also have in mind, that in case of sev-

eral contributions (η > −∞) the final wealth distribution depends more on

later bonuses than on early ones, c.f (4). Therefore, the long-run properties

are more important than this discussion perhaps suggests.

3 Fairness and efficiency

In this section the measurement of fairness and efficiency will be discussed.

Subsequently, some tangible measures of these two vague notions are intro-

duced.

3.1 Preliminary reflections

Since we consider a compulsory scheme the design must satisfy (this approach

is inspired by David McCarthy) that

almost every outcome is acceptable for almost every one.

Hence, it is required that – on the vast majority of paths and for almost all

types of members – the degree of redistribution between different generations

is low, while the outcome must at the same time be satisfactory for almost

everyone. The precise materialisation of these notions will be made clear

below.

To further approach a decision rule we rely on the original position of moral

philosophy (see Rawls (1971)), which loosely states that any design agreed

upon by agents whose identity is unknown to themselves during the bargain-

ing is fair.

It is clear that not all generations can get the same outcome. And as hinted

above it is probably not desirable to follow a very cautious investment strat-
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egy with the aim of approximating such equality. The question is then,

how the board should evaluate the inherent redistribution against a possible

advantage from investing more aggressively. Although such trade-offs are

acknowledged in most economic analysis, they are typically disregarded.

In order to pick fairness and efficiency measures we consider a hypothetical

bargaining between two members entering the scheme at funding ratios κ

and f ∈ (1, κ] respectively, but with the caveat that they must design the

system without knowing who enters at which funding. f may depend on the

design parameters (s, κ), as will be explained below, but the notation f is

used as a shorthand nevertheless, since the meaning will always be clear from

the context. The generations represented by the two members are taken to

experience identical institutional conditions during their membership peri-

ods, but their financial markets are assumed to be governed by independent

versions of B, and f is taken to be independent of those. This means that

a proper, although not imperative, interpretation of the setup is that the

member with funding f enters first, and then after at least n years the other

member enters at a time with full funding.

As for the actual measurement, the initial dogma of this section and the

idea of the original position guides us. Efficiency of the outcome should be

associated with the distribution of the terminal benefit, which must overcome

some minimum target with a high probability. Fairness ought to be related

to the ratio of the terminal benefits, which we want to be close to one with a

high probability. Non-overlapping generations are compared, and the ratio

of the benefits of two such disjoint generations has a wider distribution than

in the case of overlapping generations. Thus, in this respect the discussion

in this paper is ”worst case” in terms of intergenerational subsidisation.

The two most widely applied measures for evaluating a monetary random

variable is measuring its arbitrage-free value or its expected utility. We

discard the former approach because of the assumed non-tradeability of the

guarantee, and we discard the latter because we prefer to ensure attractive

outcomes with a high probability.
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3.2 Two formulations of the problem

Regarding the choice of initial fundings to compare, it is uncontroversial to

use κ as the higher level. As for the lower value one may choose to consider

a constant. In this case it is meaningful to compare different barriers, for –

as discussed above – there is a trade-off between high and low barriers.

Alternatively, we could let f = 1 + (κ − 1)θ for some θ ∈ (0, 1) as in Sec-

tion 2.1, in which case higher barriers are more attractive for both parties,

so that it is not possible to optimise over κ. Still, to properly differentiate

between candidates for the optimal investment strategy we let θ depend on

s, since a high distance from the barrier is more likely with more aggres-

sive strategies. To this end, fix an ε ∈ (0, 1), and choose θ(s) such that

P (1 + (κ− 1)θ(s)) = ε in stationarity. From Preisel et al. (2010) we then

get

θ(s) =
(

ε

1− sρ/
√

2

)ρ−1

, (0 < s < 2Λ),

where ρ is the unique non-zero solution to

1− ρ2s2/2 = exp (−ρs(Λ− s/2)) , (0 < s < 2Λ).

For s ≥ 2Λ no stationary distribution exists, therefore we truncate θ at the

value corresponding to the somewhat arbitrary s = 1.99Λ.

The former setting corresponds to an existing scheme encountering a (low)

funding ratio, and wishing to design a fair and efficient scheme going forward.

On the other hand, the latter formulation covers the case of a new scheme

with all the good intentions at the outset, but with an exogenously fixed κ.

We refer to the two settings as ”case A” and ”case B” respectively.

3.3 Measuring fairness and efficiency

Sections 3.3.1 and 3.3.2 present our choices for measuring fairness and ef-

ficiency respectively. They are combined to form two different constrained

optimisation problems in Section 3.3.3.

3.3.1 Fairness

To measure intergenerational fairness we focus on a threshold for the ratio

of the respective terminal benefits:
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P
(

X (s, κ, f)
X (s, κ, κ)

> 1− δ

)
, (6)

where 0 ≤ δ < 1 measures the maximum permitted redistribution (up to

some probability). If the generations were contemporary the ratio in question

would be bounded by one. Although studying disjoint generations we use

the measure nevertheless, and thus disregard the extent to which the ratio

exceeds one.

3.3.2 Efficiency

The quantification of efficiency follows similar lines as above. As previously

hinted, a target is needed to calculate efficiency. To this end expected power

utility is used as a measure of satisfaction. Since the target will only be

used as an auxiliary we prefer this simple approach, because it is easy to

communicate, and requires one parameter only. The certainty equivalent of

a positive random variable, Y , is then

CE (γ; Y ) ,
{
E

{
Y 1−γ

} 1
1−γ , γ ∈ [0,∞)\{1}

exp (E {log Y }) , γ = 1
, (7)

where γ ≥ 0 denotes the coefficient of relative risk aversion. The suggested

efficiency measure for a generation with funding f < κ is

P
(

X(s, κ, f)
maxs̄,κ̄∈S×K CE (γ; X(s̄, κ̄, f))

> 1− β

)
. (8)

For the two generations efficiency is measured by merely adding their re-

spective terminal benefits to a single random variable. Due to linearity

of the certainty equivalent, 0 ≤ β < 1, can be interpreted as the maxi-

mum permitted relative cost of obtaining fairness (up to some probability).

S × K ⊆ (0,∞)× (1,∞) is a range of considered design variables.

3.3.3 Constrained optimisation

Combining the criteria (6) and (8) produces two different constrained opti-

misation problems. First, if we maximise efficiency subject to a fairness side

condition we get:
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max
s,κ∈S×K

P
(

X (s, κ, κ) + X (s, κ, f)
maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, κ̄) + X (s̄, κ̄, f))

> 1− β

)
(9a)

subject to

P
(

X (s, κ, f)
X (s, κ, κ)

> 1− δ

)
≥ p, (9b)

and subject to Pareto optimality:

∀(s̃, κ̃) ∈ (S × K)\{(s, κ)} : (9c) or (9d) satisfied.

P (X (s, κ, f) > (1− β)maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, f)))
P (X (s̃, κ̃, f) > (1− β)maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, f)))

≥ 1 (9c)

P (X (s, κ, κ) > (1− β)maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, κ̄)))
P (X (s̃, κ̃, κ) > (1− β)maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, κ̄)))

≥ 1. (9d)

A natural consequence of having individual measures of efficiency is to con-

sider only the Pareto optimal candidates.

The reverse constrained optimisation is the one where a fairness criterion is

maximised subject to an efficiency threshold condition:

max
s,κ∈S×K

P
(

X (s, κ, f)
X (s, κ, κ)

> 1− δ

)
. (10a)

subject to

P
(

X (s, κ, κ) + X (s, κ, f)
maxs̄,κ̄∈S×K CE (γ; X (s̄, κ̄, κ̄) + X (s̄, κ̄, f))

> 1− β

)
≥ p. (10b)

In (10) the inclusion of (9c)-(9d) is not imperative, nor meaningful. In (9b)

and (10b) p ∈ [0, 1] is a minimum acceptance probability decided along with

β and δ. Before proceeding we warn that for some parameterisations one

might end up with probabilities of zero or one, in which case the clever

approach is to re-parameterise, unless it was intentional.

Next, we illustrate the suggested criteria through simulations.

4 Simulation-based illustrations

In this section we mainly analyse a ”mature” fund with equal in- and outflow

of Π = Γ = 0.02, net contribution inflation η = 0.02, a horizon of n = 50,

and market price of risk, Λ = 0.25. Following the analysis of the base case
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each of the main parameters (Π, Γ, η, n, and Λ) are changed, and the derived

consequences are briefly discussed. Also, the auxiliary parameters are fixed

at β = 0.05, δ = 0.05, γ = 0.5, f = 1.02 (case A), ε = 0.05 (case B),

and κ = 1.3 (case B), but a sensitivity analysis is conducted in Section 4.3.

Finally, Section 4.4 reviews the simulation details.

4.1 Base case

Figures 2 and 3 show the trade-off between fairness and efficiency. In the

former graph the bonus barrier and the investment strategy are both to be

optimised over (case A), whereas the latter considers a pre-specified bonus

barrier (case B). The results are qualitatively in line with the predictions of

Section 2.1.

In case A, higher barriers yield less fairness (because generations are more

different), but more efficiency. Also, the optimal strategies associated with

higher barrier are more cautious. If one uses the maximum-efficiency crite-

rion (9), a very narrow range of (for this parametrisation) modestly aggres-

sive strategies are non-dominated. The most cautious as well as the most

aggressive investment strategies are excluded by Pareto inoptimality, while

others are merely dominated. When the maximum-fairness criterion (10) is

imposed instead, all investment strategies above some threshold are candi-

dates for optimum, because redistribution is less for more aggressive strate-

gies (bonus becomes rare).

Conversely, in case B, the heritage to future generations is implicitly con-

sidered (through the long-run funding level), which leads to less aggressive

strategies being favourable. With a main focus on efficiency, through crite-

rion (9), a range of rather cautious investment strategies are non-dominated,

as in case A, though these values of s are generally much lower in case B. If

fairness is emphasised instead, all strategies below a certain threshold are po-

tentially optimal, which highlights the difference between the two cases. In

case B, even modestly aggressive investment strategies are penalised severely

by a higher initial distance from the barrier – in turn making them poor can-

didates for yielding sufficient efficiency.

Altogether, the results show that it is hard to obtain outcomes that are
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adequately efficient and fair to a high degree at the same time. One way of

overcoming this is to alter the way in which contributions are transformed

into benefits, which is the topic for Section 5.

4.2 Alternative environments

4.2.1 Demography

When the net outflow is positive (Π > Γ) bonuses are higher and more

frequent than otherwise. Oppositely, of course, in a fund that is in the process

of building up its balance. The aggregate effect on fairness and efficiency

is not clear at the outset. The situation with Π = 0.1, and Γ = 0.02 is

shown in Figure 4, which demonstrates that intergenerational subsidisation is

slightly less in such a non-accumulating scheme, without harming efficiency.

In general, the trade-off governing the design decision is very similar to the

base case in Figures 2 and 3.

4.2.2 Economy

As net contribution inflation, η, is increased, a higher degree of fairness is

obtained, because – as previously mentioned – later bonus matters more,

and later bonus is more likely to be the same for both generations. Also,

all strategies become more efficient because the terminal distribution is nar-

rower, i.e. less dependent on bonus.

When the market price, Λ, increases, bonuses are larger and more frequent.

More aggressive investment strategies are, of course, preferable.

The qualitative and quantitative conclusions from the base case are surpris-

ingly insensible to changes to η and Λ. The only noteworthy effect is that

higher contribution inflation implies slightly more cautious investment in

case A because of the amplified importance of later bonuses.

4.2.3 Horizon

Extending the horizon, n, makes the system fairer, due to the longer period

with identically distributed bonuses, (n − τ)+. The shapes of the curves in

Figures 2 and 3 are essentially unaltered, however. Only, in case A, slightly
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more cautious investment strategies are preferred on longer horizons, as the

long-run properties become more important. This point emphasises that

when sampling from a fixed (not affected by the controls) initial distribution

(in this case a Dirac distribution), and the terminal conditions do not matter

there is a need for someone, be it the board or the regulator, to require long-

run stability, for otherwise it is tempting to gradually – or swiftly – exhaust

the bonus reserve to the disadvantage of future generations.

4.3 Sensitivity

The choice of β, γ, δ, in case A: f , and in case B: ε and κ matters little as

far as the qualitative conclusion goes.

As for the former two, the reason that the parameters play minor roles is that

the benefit distribution is quite narrow (on most trajectories bonus is small

compared to contributions), and bounded (far) away from zero. Of course,

the higher the values of β and γ, the higher the efficiency. Therefore it is

instructive to use a rather low γ-value, since this ensures that the efficiency

probabilities are not too high for any agent.

The choice of δ affects the level of fairness profoundly – but the shapes of

the curves in Figures 2 and 3 are unaltered.

In case A higher f implies more fairness and a shift towards slightly more

cautious investment.

The tail probability, ε, was introduced to allow a design-dependent distinc-

tion between the two generations, and the extent to which this differentiation

is carried out does not affect the results much as long as ε is kept reasonably

small.

Also, by construction, the choice of κ, in case B, only influences the con-

ditional bonus, and only so to an extent which hardly affects the optimal

choice of s.

4.4 Simulation details

The simulations were done in the freeware statistical computing package R.

In all cases 100,000 paths were simulated. The seed was set manually to allow

all results to be reproduced, and reused across experiments. It is particularly
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important to ensure that disjoint generations experience independent market

innovations. Oppositely, if contemporary generations were considered, it

would be equally important that they sampled the same financial market.

Distribution functions are estimated by their sample counterparts.

5 Extensions

The previous section showed that although some designs are superior to

others it is not possible to obtain high levels of fairness and efficiency at

the same time, when the entire contribution is transformed into guaranteed

future benefits, i.e. g = 1. It is straightforward, however, to design rules

that take the differing conditions into account, and hence – partly – overcome

systematic intergenerational redistribution. Below we present two such rules.

5.1 A solidary rule

When a policy expires its accrued guarantees (including bonus) are paid out,

but the free reserve stays in the fund. Therefore, ceteris paribus, the funding

ratio increases as a result of an expiry. This gain is split between existing

members and new contributions according to some rule. In the standard

case, g = 1, new money always benefits from entering in the sense that the

value of their guarantee can be approximated by giFi+1, which is greater

than one, but highly dependent on the random timing of entry

Instead, the way in which contributions are transformed into guaranteed

future benefits may be based on the solidary point of view that giFi+ should

be the same for all generations, that is

gi

(
Fi− + Γi −Πi

1 + giΓi −Πi
∧ κ

)
= Ci, (11)

for some positive Ci < 1+Γi−Πi
Γi

, which - for the natural choice Ci = 1 – is

solved by the solidary rule

gi =
1−Πi

Fi− −Πi
∨ κ−1, (i ≥ 1) (12a)

g0 =
1

F0+

(12b)
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In general Ci could depend on e.g. demographics forecasts and time to

expiry.

Because g < 1 the funding ratio gets a boost upwards, so that bonuses

are larger and more frequent (in return for lower guarantees). As in the

case of positive net inflow the combined effect on fairness is ambiguous,

depending on the horizon, among others. For the base case it turns out that

fairness is enhanced slightly. The fairness measure (6) is ill-suited, however,

since it focuses exclusively on one-sided deviations. As a matter of fact

the generations can be made approximately equally well off when using the

solidary rule (in the sense that the density of the ratio between the benefits

is much more balanced around 1), which is a major advance over the results

obtained with g = 1.

5.2 An indemnifying rule

As another example we present the indemnifying rule
Fi− + Γi −Πi

1 + giΓi −Πi
∧ κ = Fi− ∧ κ,

which gives staying members the same funding ratio regardless of the amount

of new entrants and exits. This rule yields

giΓi = Πi +
Γi −Πi

Fi−
, (i ≥ 1) (13a)

g0Γ0 = Π0 +
Γ0 −Π0

F0−
, (13b)

the latter assuming F0− is known. The indemnifying rule enhances fairness

still more the higher the ratio of inflow to outflow, precisely because an

accumulating scheme releases relatively little bonus reserve, and thus the

higher the pre-bonus reserve the less the new entrants will receive (in terms

of g). The neutralising effect of the solidary rule is only achieved if there is

no outflow, however – in which case the two rules are almost identical.

6 Discussion and conclusion

This section discusses the insights gained from the paper’s model. Also,

limitations and possible alternatives approaches are described. Policy impli-

cations are touched upon, and finally, concluding remarks are given.
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One of the main lessons that can be derived from the paper stems from the

vast difference between cases A and B. In the former situation both invest-

ment strategy and bonus barrier are optimisation variables, and the trade off

is that higher barriers induce more efficient systems that are less fair. Con-

versely, in case B higher barriers are always preferable. If efficiency is the

maximisation object and fairness the side condition there is a narrow range

of non-dominated strategies in either case (though those ranges are substan-

tially different the cases between). But if fairness is maximised subject to

an efficiency constraint the two cases differ markedly. In case A cautious

strategies are dominated, but in case B aggressive strategies are dominated

because they imply low initial funding and thus low fairness. These qualita-

tive conclusions are stable under different parameterisations, but are likely

sensitive to different formulations of the objective.

Another important insight comes from realising how fairness can be improved

substantially upon by introducing new ways of transforming contributions

into guaranteed future benefits.

A third outcome is the ability to exclude certain investment strategies based

on dominance arguments.

6.1 Limitations and alternatives

Obviously the evaluation of intergenerational fairness is much broader than

what can be covered here. For instance, one could argue that by facing

identical rules generations are treated fairly in that the economic conditions

they face are not explicitly controlled by other generations. Also, even within

the present paradigm, redistribution and efficiency could be measured quite

differently.

The presented rules do not aim at converting each contribution into guaran-

tees in a fair manner. That is, the value of the compound bonus option does

not equal its implicit price, as the former depends on time to maturity and

forecasts of demographics etc. Instead, it is assumed that all members have

identical contribution plans, so there is no heterogeneity nor any free policy

or surrender options.

Default is precluded by construction in the present setting. To overcome
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this weakness one could allow for default by fixing the portfolio only at

the beginning of each period. This would mimic real life investment be-

haviour more closely than the often employed constant allocation to stocks,

while still allowing for bankruptcy. Within the realm of no-default one

could change the asset allocation in some non-linear way, while maintain-

ing limFt→1+ π(Ft) = 0+, e.g. through an Option Based Portfolio Insurance

(OBPI) strategy.

Another way of introducing default is to allow for non-marketed shocks to

the value of liabilities – interpreted as unanticipated changes in mortality,

statute, or the like. Such jumps could occur periodically or at random points

in time.

Instead of distributing all excess funding as bonus, some authors argue in

favour of smoothing bonus allotting over time precisely with the aim of re-

ducing the effect of random entry time funding levels. This would reduce

subsidisation slightly. Another widespread alternative consists of basing the

bonus on the past year’s financial performance exclusively, which reduces in-

tergenerational redistribution, but enhances solvency problems (if the mem-

bers do not participate in the downside).

Finally, as previously mentioned one could consider perfectly contemporary

generations sampling the same market. Then the interpretation of fairness

would be somewhat different, namely related to joining schemes with differ-

ent initial funding, but which are operated identically. This appears some-

what less interesting from a designer’s point of view, but can be very useful

in other settings.

6.2 Policy implications

A regulator overseeing scheme design, or an altruistic designer should discuss

the weighing between short and long term objectives as well as the trade-off

between fairness and efficiency. In order to use the analysis in the framework

laid out here to make an informed decision they must also choose whether

case A or B is more appropriate for their purpose.

The most important recommendation stems from noting how fairness can be

enhanced greatly at no cost by following the suggestions in Section 5.
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6.3 Concluding remarks

This paper discusses fair and efficient design of with-profits pension schemes.

More specifically, strategies for investment and bonus allotment are treated.

As in many other problems in social science an important, but often ne-

glected, feature of this problem is the crucial choice of measure for the in-

tangible quantities fairness and efficiency. We have suggested a set of crite-

ria and sketched the characteristics of an optimal design in two situations.

First, one where only the present generation is considered, and second the

case where the long-run properties (i.e. the heritage to future generations)

are implicitly taken into account. It turns out that the optima are very dif-

ferent – quite precisely representing the different approaches. Finally, as a

consequence of the somewhat dismal results of that analysis, different ways

of converting contributions into guarantees are suggested and shown to yield

a substantial improvement.
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A Figures

Figure 1: The distribution of the non-delayed regeneration time τ (1; s) .

Fixed parameters: g = 1, Γ−Π = 0, and Λ = 0.25.
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Figure 2: Case A: Trade-off between efficiency (8) and fairness (6) at dif-

ferent values of s indicated in the diagram. The left curve corresponds to

κ = 1.5, and the right curve represents κ = 1.1. The dashed parts of the

graphs correspond to strategies that were discarded due to (9c)-(9d). Fixed

parameters: g = 1, Γ = Π = 0.02, η = 0.02, n = 50, Λ = 0.25, γ = 0.5,

β = δ = 0.05, S ⊆ (0, 1], K = {1.1, 1.5}, and f = 1.02.
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Figure 3: Case B: Trade-off between efficiency (8) and fairness (6) at dif-

ferent values of s indicated in the diagram. The dashed parts of the graph

corresponds to strategies that were discarded due to (9c)-(9d). Fixed param-

eters: κ = 1.3, g = 1, Γ = Π = 0.02, η = 0.02, n = 50, Λ = 0.25, γ = 0.5,

β = δ = 0.05, S ⊆ (0, 1], K = {κ}, and ε = 0.05.
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Figure 4: Case B: Trade-off between efficiency (8) and fairness (6) at dif-

ferent values of s indicated in the diagram. The dashed parts of the graph

corresponds to strategies that were discarded due to (9c)-(9d). Fixed pa-

rameters: κ = 1.3, g = 1, Γ = 0.02, Π = 0.1, η = 0.02, n = 50, Λ = 0.25,

γ = 0.5, β = δ = 0.05, S ⊆ (0, 1], K = {κ}, and ε = 0.05.
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