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ABSTRACT

The mortality evolution of small populations often exhibits substantial variabil-
ity and irregular improvement patterns making it hard to identify underlying 
trends and produce plausible projections. We propose a methodology for robust 
forecasting based on the existence of a larger reference population sharing the 
same long-term trend as the population of interest. The reference population 
is used to estimate the parameters in a frailty model for the underlying inten-
sity surface. A multivariate time series model describing the deviations of the 
small population mortality from the underlying mortality is then fi tted and 
forecasted. Coherent long-term forecasts are ensured by the underlying frailty 
model while the size and variability of short- to medium-term deviations are 
quantifi ed by the time series model. The frailty model is particularly well 
suited to describe the changing improvement patterns in old age mortality.
We apply the method to Danish mortality data with a pooled international 
data set as reference population.
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1. INTRODUCTION

Mortality projections are of  great importance for public fi nancing decisions, 
health care planning and the pension industry. A large number of  forecasts 
are being produced on a regular basis by government agencies and pension 
funds for various populations of  interest. In many situations the population of 
interest is quite small, e.g. the population of  a small region or the members 
of a specifi c pension fund, and historic data shows substantial variability and 
irregular patterns. Also, historic data may be available only for a relatively 
short period of time.
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The most widely used methodology for making mortality projections is the 
method proposed by Lee and Carter (1992). The model describes the evolution 
in age-specifi c death rates (ASDRs) by a single time-varying index together 
with age-specifi c responses to the index. The structure implies that all ASDRs 
move up and down together, although not by the same amounts. The method 
has gained widespread popularity due to its simplicity and ease of interpretation 
and there has been a wealth of applications, see e.g. Tuljapurkar et al. (2000); 
Booth et al. (2006); Pitacco et al. (2009) and references therein. A number of 
extensions and improvements have been proposed, e.g. Brouhns et al. (2002); 
Lee and Miller (2001); Renshaw and Haberman (2006); Renshaw and Haberman 
(2003); de Jong and Tickle (2006); Currie et al. (2004); Cairns et al. (2006), but 
the original Lee-Carter method still serves as the point of reference. A com-
parison of eight stochastic mortality models including the Lee-Carter model 
can be found in Cairns et al. (2009).

1.1. Small population mortality

The Lee-Carter model is designed to extrapolate regular patterns with con-
stant improvement rates over time. However, while the mortality experience of 
large populations often conforms with this pattern the mortality evolution of 
small populations is generally much more irregular. Lack of fi t of the Lee-Carter 
model for small populations, including the Nordic countries, was reported by 
Booth et al. (2006) in a comparative study. In Denmark, for instance, improve-
ment rates have varied considerably over time within age groups and there has 
been periods with improvements in some age groups and stagnation or even 
slight increases in other age groups violating the Lee-Carter assumptions; see 
Jarner et al. (2008); Andreev (2002) for detailed accounts of the evolution of 
Danish mortality.

The characteristics of small population mortality makes forecasting based 
on past trends problematic and very sensitive to the fi tting period. Naive 
extrapolation of historic trends in ASDRs is likely to lead to implausible pro-
jections and unrealistic age-profi les, e.g. old age mortality dropping below that 
of younger ages. Often, however, the population under study can be regarded 
as a subpopulation of a (larger) reference population obeying a more regular 
pattern of improvement, e.g. a region within a country, or a small country in a 
larger geographical area etc. Furthermore, it will often be reasonable to assume 
that the study and reference populations will share the same long-term trend.

For illustration of the problems associated with small populations Figure 1 
shows the development in Danish and international female mortality from 
1933 to 2005 for ages 40, 60 and 80 years. The international data consists of 
a pooled international data set with data from 19 countries, see Section 3.1 for 
details. The Danish data exhibits large annual variations but it appears to 
share the same long-term trend as the international data. It is also clear however 
that there are extended periods of time where Danish mortality deviates sub-
stantially from the international level, and that projections of Danish mortality 
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based on Danish data alone will be less stable than projections based on inter-
national data.

In this paper we propose a methodology for robust small population mortal-
ity projection based on the identifi cation of a reference population. The method 
consists of  two steps: First, the reference population is used to estimate a 
parametric, underlying intensity surface which determines the long-term trend. 
Second, a multivariate, stationary time series model describing the deviations 
of  the small population mortality from the trend is fi tted. Projections are 
obtained by combining extrapolations of the parametric surface with forecasts 
of the time series model for deviations. Coherent long-term mortality profi les 
are guaranteed by the parametric surface while the purpose of the time series 
is to quantify the short- to medium-term variability in improvement rates of 
the small population.

It is common to base mortality forecasts on time series models. Typically, 
parameters describing the evolution of period life tables are estimated assuming 
either a parametric or non-parametric age-profi le. A time series model, often 
a random-walk with drift, is then fi tted and forecasted for each of the param-
eters. The role of the time series in these methods is to capture both the trend 
in parameters and their uncertain evolvement around the trend. The structure 
implies that large short-term variability invariably lead to even larger long-
term variability. In contrast, the proposed method by treating deviations from 
the trend as stationary allows for substantial short-term variability without 
infl ating the long-term uncertainty.

The majority of the vast literature on stochastic modelling of mortality 
rates focuses on single-population forecasts. There is however a small, recent 
literature on joint modelling of two or more populations which is related to the 
present paper. Li et al. (2004) introduce in general terms the idea of borrowing 

FIGURE 1: Danish (dashed line) and international (solid line) development in female log
death rates from 1933 to 2005 for selected ages.
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information from similar countries, while Li and Lee (2005) use common and 
individual components to produce coherent forecasts for related populations 
in the Lee-Carter framework. Plat (2009) relates a portfolio of insured lives to 
a national population with the aim of discussing basis risk; Biatat and Currie 
(2010) introduce a concept of similarity to facilitate the classifi cation and com-
parison of mortality tables; Dowd et al. (2011) propose a gravity model in 
which parameter processes for two populations are attracted to each other; 
while Cairns et al. (2011) develop and implement a joint model for two related 
populations in a Bayesian framework. Finally, Li and Hardy (2009) compare 
various joint models of the Lee-Carter type.

1.2. Old age mortality

The modelling of old age mortality presents perhaps the most challenging part 
of mortality modelling. The historic development in Danish old age mortality, 
say age 70 and above, shows very modest improvement rates, far below those 
observed for the younger ages. However, over the last decade or so improve-
ment rates have picked up and currently 70-year-olds experience improvement 
rates equalling those of younger ages. The picture is the same in most developed 
countries: old age mortality has historically improved at a slower pace than 
young and middle age mortality, but recently improvements rates have gradually 
risen.

The fact that old age improvement rates increase over time cause forecasts 
based on the Lee-Carter methodology to systematically under-predict the 
gains in old age mortality, cf. Lee and Miller (2001). As a consequence it has 
been recommended to use a shorter fi tting period over which data conforms 
better with the assumptions of time-invariant improvement rates, see e.g. Lee 
and Miller (2001); Tuljapurkar et al. (2000); Booth et al. (2002). Although this 
approach clearly forecasts higher improvement rates in old age mortality it 
seems somewhat ad-hoc and not entirely satisfying. In this paper we take a 
different route.

Our ambition is to derive a simple model for the population dynamics in 
which changing mortality patterns naturally arise. This will allow us to charac-
terize how mortality improvements change over time and to make predictions 
for future improvements in old and oldest-old mortality. Inspired by frailty 
theory we assume that the population consists of a heterogeneous group of 
individuals with varying degrees of frailty. Frail individuals have a tendency 
to die fi rst causing a concentration of robust individuals at high ages. Taken 
this selection mechanism into account and assuming continued improvements 
over time a model for the entire intensity surface of the population over time 
can be derived. We will use the resulting parametric surface to describe the 
development of the reference population.

The frailty model offers an explanation to the observed lack of improve-
ment in old age mortality. The mortality for a given age group at a given time 
is infl uenced by two factors: the current level of health and the average frailty. 
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Over time the level of health improves but so does the average frailty. In effect, 
as mortality improves the selection mechanism to reach a given age weakens 
causing healthier but more frail individuals to become old. In the transition 
from high to low selection the two effects partly offset each other such that 
the aggregate mortality for the age group is almost constant. Eventually the 
health effect will dominate the selection effect and improvements will be seen. 
We will explore these effects in some detail and derive the asymptotic improve-
ment pattern implied by the model.

For two reasons we focus on adult mortality only in our modelling, i.e. 
mortality for age 20 and above. First, the nature of infant and child mortality 
is rather different from adult mortality and more complexity will have to be 
added to the model to fi t the historic evolution adequately. Second, current 
levels of infant and child mortality are so low that their future course has very 
little impact on life expectancy and other aggregate measures. Hence, from a 
forecasting perspective not much is gained by the added complexity. In fact, 
with current mortality levels already very low up to age 60, say, future life 
expectancy gains will be driven almost exclusively by the development in old 
age mortality. However, by modelling the full adult mortality surface we are 
able to extract information about the general nature of improvement patterns 
and to predict when improvements will start to occur for age groups where 
none have been seen historically.

The multiplicative frailty model that we will make use of was introduced 
by Vaupel et al. (1979). In biostatistics and survival analysis the concept of 
frailty is well established, see e.g. Hougaard (1984); Aalen (1988); Wienke 
(2010). In the actuarial literature frailty models have also appeared, although 
less frequently. Wang and Brown (1998) use the Perks model to graduate mortal-
ity improvement factors; Butt and Haberman (2004) use generalized linear mod-
els to graduate insurance-based mortality data; while Olivieri (2006) gives an 
overview of the use of heterogeneity models in life insurance. More recently,
Li et al. (2009) use frailty to introduce heterogeneity in the Lee-Carter model, and 
Olivieri and Pitacco (2009) employ the multiplicative frailty structure to dynam-
ically update the mortality evolution of a portfolio relative to a given life table.

1.3. Outline

The rest of the paper is organized as follows: in Section 2.1 we present the 
proposed methodology for small population mortality modelling consisting of 
a separation of trends and deviations; in Section 2.2 we derive a parametric, 
frailty model for the underlying intensity surface and study some implications 
and asymptotic properties; and Section 2.3 contains a description of the time 
series model for deviations. In Section 3 we give an application to Danish data 
taken a large international data set as reference population, Section 4 contains 
a study of the fi t and forecasting performance of the model, and in Section 5 
we offer some concluding remarks and indicate further lines of  research.
The Appendix contains some additional theoretical developments and proofs.
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2. THE MODEL

2.1. Methodology

In the following we suggest a methodology for robust forecasting of small pop-
ulation mortality. The evolution of small population mortality is characterized 
by being more volatile and having less regular improvement patterns compared 
to what is observed in larger populations. These features make simple projec-
tion methodologies very sensitive to the choice of fi tting period and lead to 
very uncertain long-term forecasts. The fundamental idea in the proposed 
method is to use a large population to estimate the underlying long-term trend 
and use the small population to estimate the deviations from the trend.

We distinguish between unsystematic and systematic variability. Unsystematic 
variability refers to the variability associated with the randomness of the time 
of deaths in a population with a known mortality intensity, while systematic 
variability refers to the variability of the mortality intensity itself. Since the 
populations we are interested in are small by assumption we expect noticeable 
unsystematic variability. For instance, we do not expect crude (unsmoothed) 
death rates, constructed from the mortality experience of a single year, to be 
strictly increasing with age although we believe it to hold for the underlying 
intensity (at least from some age).

However, even taken the larger unsystematic variability into account it 
appears that small populations also have a greater systematic variability than 
larger populations. Presumably small populations are more homogeneous and 
thereby more infl uenced by specifi c effects. There are a number of reasons why 
this might be. Consider for instance the members of an occupational pension 
scheme. The members have the same or similar education and job, and prob-
ably also to some extent similar economic status and life style compared to the 
population at large. Similarly, the population in a specifi c country is infl uenced by 
common factors, e.g. the health care system and social habits such as smoking. 
The homogeneity implies that specifi c changes in e.g. socioeconomic conditions 
will have a greater impact on the mortality in a small population compared to 
a large population with greater diversity in background factors.

We will assume that the population under study can be regarded as a 
subpopulation of  a larger population, e.g. the population of  a province is a 
subpopulation of  the national population, and a national population can be 
regarded a subpopulation of  the total population of  a larger geographical 
region, or of  similarly developed countries. We will refer to the small popula-
tion as the subpopulation and the large population as the reference population. 
Although both unsystematic and systematic variability will be greater in the 
subpopulation it is reasonable to assume that the sub- and reference popula-
tions will share the same long-term trends in mortality decline, even in the 
presence of substantial deviations in current mortality levels. The alternative 
is diverging levels of  mortality which in the long run seems highly unlikely
for related populations. Wilson (2001); Wilmoth (1998) provide evidence for 
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convergence in global mortality levels due to convergence of  social and eco-
nomic factors.

2.1.1. Data

We will assume that data consists of death counts, {D(t, x)}, and correspond-
ing exposures, {E(t, x)}, for a range of years t and ages x. Data is assumed to 
be available for both the sub- and reference population (distinguished by sub-
script sub and ref, respectively), but not necessarily for the same ranges of 
years and ages. Data will typically also be gender specifi c, but it does not have 
to be. Since it is of no importance for the formulation of the model we will 
suppress a potential gender dependence in the notation.

D(t, x) denotes the number of deaths occurring in calender year t among 
people aged [x, x  + 1), and E(t, x) denotes the total number of years lived during 
calender year t by people of age [x, x  + 1). For readers familiar with the Lexis 
diagram, D(t, x) counts the number of deaths in the square [t, t  +  1)  ≈  [x, x  +  1) 
of the Lexis diagram and E(t, x) gives the corresponding exposure, i.e. we work 
with so-called A-groups.

2.1.2. Model structure

From the death counts and exposures we can form the (crude) death rates 

 
(
(

( ,
,
,

m t x
E t x
D t x

=
)

)
)

, (1)

which are estimates of the underlying intensity, or force of mortality, m(t, x).1

In order to proceed we assume that we have a family of intensity surfaces 
{Hq (t, x)} parameterized by q, and we consider the model where death counts 
are independent with 

 ( m, ) Poisson ( , ) ( , )t x t x t xref ref ref+ E ,D _ i  (2)

and mref (t, x)  =  Hq (t, x). Based on this model we fi nd the maximum likelihood 
estimate (MLE) for q, denoted by q. In principle we could use a Lee-Carter 
specifi cation of m in which case the model is the one proposed in Brouhns et 
al. (2002). However, by assumption the evolution of the reference population 
is smooth which allows us to get a good fi t with a more parsimonious specifi -
cation. In Section 2.2 we will develop a specifi c family of intensity surfaces, 
which will be shown to provide a very good fi t to the reference data in our appli-
cation. The use of a parametric model also offers insights into the dynamics 
of improvement rates over time.

1 We use m to indicate an intensity surface which is constant over calender years and over integer ages. 
We reserve the use of m, which will later be used to denote a continuous intensity surface.
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The next step is to model the deviations of the subpopulation from the 
reference population. We will refer to the deviations as the spread and we pro-
pose to use a model of the form 

 ( m, ) Poisson ( , ) ( , )t x t x t xsub sub sub+ E ,D _ i  (3)

with

 tq (( , , ) )t x H t xsub x= �) (m exp y r  (4)

where yt�  =  (y0, t,  …,  yn, t) and r�x  =  (r0, x,  …,  rn, x) for some n. Again, this does
in fact allow a Lee-Carter specifi cation of the deviations. However, we will 
consider the situation in which the r’s are fi xed regressors and only the y’s
are estimated (by maximum likelihood estimation). Note, that in this case
the estimates of yt only depend on data from period t. In Section 2.3 we will 
propose a specifi c model with three regressors corresponding to level, slope 
and curvature of the spread.

The last step is to fi t a time-series model for the multivariate time-series yt. 
We will use a VAR(1)-model for which standard fi tting routines exist. If  the 
assumptions behind the modelling approach are fulfi lled the time-series should 
not display drift but rather fl uctuate around some level (which may be different 
from zero). In other words, we expect yt to be stationary.

Forecasts are readily produced by combining trend forecasts with time-series 
forecasts of the spread. Assuming independence between trend and spread we 
have, with a slight abuse of notation,2 the following variance decomposition 

 t x(Var( ( , ) Var( , )) Var( ) .log logt x t x y rqsub = + �) Hm  (5)

We see that there are two sources of  (systematic) variability: the trend and 
the spread. For most specifi cations of  Hq the variance will increase with the 
forecasting horizon. The variance of  the spread, however, will only increase 
up to a given level under the assumed stationarity of  yt. The model does not 
forecast the mortality of  the subpopulation to convergence in an absolute 
sense to that of  the reference population, but the spread will be bounded (in 
probability).

In the following sections we develop a specifi c model which falls within
the framework described above. The model will subsequently be used in an 
application to Danish mortality taking an international data set as reference 
population. With this application in mind the model has been dubbed SAINT 
as an abbreviation for Spread Adjusted InterNational Trend.

2 In equation (5) q is considered as an estimator with a distribution rather than a fi xed number.
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2.2. Trend modelling

A great number of functional forms have been suggested as models for adult 
mortality, see e.g. Chapter 2 of Gavrilov and Gavrilova (1991). Classical forms 
include the ones associated with the name of Gompertz 

 a( ) (expx =m b ),x  (6)

and Makeham 

 a( ) ( .expx g=m +b )x  (7)

Both of these capture the approximate exponential increase in intensity observed 
for adult mortality. The Makeham form also includes an age-independent con-
tribution which can interpreted as a rate of accidents. The additional term, 
referred to as background mortality, improves the fi t at young ages.

Old age mortality, however, is generally overestimated by the assumed 
exponential increase. Empirical data typically shows decreasing acceleration 
in mortality at old ages, or even a late-life mortality plateau. A functional form 
that captures both the (approximate) exponential growth rate seen in adult 
mortality and the subsequent sub-exponential increase at old ages is the logistic 
family 

 (
a

)
(

(
exp

exp
x

1 a
=

+
+m g

)x
x
b

b )
. (8)

This form has been proposed as the basis for mortality modelling by several 
authors, e.g. Cairns et al. (2006), Bongaarts (2005), Thatcher (1999), and it has 
been shown to fi t empiric data very well in a number of applications.3

2.2.1. Selection and frailty

Various theories have been proposed trying to explain why the increase in the 
force of mortality slows down at old ages, see e.g. Thatcher (1999) and refer-
ences therein. In this paper we will focus on frailty theory as it provides a 
fl exible and mathematically tractable framework for modelling mortality.

The theory assumes that the population is heterogeneous with each person 
having an individual level of susceptibility, or frailty. Frail individuals have a 
tendency to die earlier than more robust individuals and this selection causes 
the frailty composition of the cohort to gradually change over time. The con-
tinued concentration of robust individuals in effect slows down the mortality 

3 Cairns et al. (2006) use the logistic form to describe one-year death probabilities qx, while we use it as 
model for the underlying intensity. The two quantities are related by qx  =  1  –  exp ( )y dt( )

x
m-

x 1-
#    . 

m(x).
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of the cohort and causes the cohort intensity to increase less rapidly than the 
individual intensities. The following example illustrates the idea.

Example 2.1. (Gamma-Makeham model). Assume that the ith person of a 
cohort has his own Makeham intensity:

 z(x a; (expi i= +m g,xb)z )  (9)

where zi is an individual frailty parameter, while a, b and g are shared by all persons 
in the cohort. Assume furthermore that Z follows a (scaled) G-distribution with 
mean 1 and variance s2. The force of mortality for the cohort then becomes4 

 x
b

( E) [ | ] (
1 ( ( 1) /

( )
exp

exp

exp
x

x
2a
a

am = + =
+ -

g
s

b

)
,

xb
g)Z xb +  (10)

where E[Z|x] denotes the conditional mean frailty of the cohort at age x. The 
cohort intensity in this model is of logistic form with an asymptotic value of
b/s2  +  g as x tends to infi nity. Hence, although each individual intensity is expo-
nentially increasing the selection mechanism is so strong that the cohort intensity 
levels off at a fi nite value.5

2.2.2. The multiplicative frailty model

The ideas of selection and frailty can be generalized to describe the evolution 
in mortality rates over time for a whole population. In the following we assume 
the existence of a smooth intensity surface, m(t, x), which represents the instan-
taneous rate of dying for a person aged x at time t, i.e. the probability that the 
person will die between time t and t  +  dt is approximately m(t, x)dt for small dt.

We start by considering a general, multiplicative frailty model where the 
mortality intensity for an individual with frailty z has the form 

 s (z t)( , ; ) ( , ) .t x z t x= +m m gI  (11)

Hence, individual intensities have a senescent (age-dependent) component, 
zms

I(t, x), and a background (age-independent) component, g(t). Frailty is 
assumed to affect the senescent component only and its effect is assumed to 
be multiplicative. Thus z measures the excess (senescent) mortality relative to 

4 The fi rst equality in (10) follows from Proposition A.1 with ms
I(t, x)  =  a exp (bx) and g(t)  =  g, and 

the second equality follows from Proposition A.2.
5 In fact, if  s2  >  b / a the level of heterogeneity is so large, and the selection effect thereby so strong, 

that the cohort intensity is decreasing with age! For s2  = b / a the cohort intensity is constant, while 
for smaller values of s2 the cohort intensity is increasing as expected.
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the mortality of an individual with frailty 1. Apart from the frailty-independent 
term this is the frailty model introduced by Vaupel et al. (1979).

In order to obtain an analytically tractable model we will assume that frail-
ties at birth follow a G-distribution with mean 1 and variance s2. It has been 
shown by Abbring and van der Berg (2007) that, subject to certain regularity 
conditions, the G-distribution is the limiting frailty distribution among survivors 
for a large class of initial frailty distributions. Thus, apart from its analytical 
tractability the G-distribution is in some sense the natural choice. Under the 
assumption of G-distributed frailties it follows from Propositions A.1 and A.2 
that the mortality intensity at the population level is given by 

 ,t s (( xE, ) [ | ] , ) (t x t x t= +m m gI ),Z  (12)

where E [Z | t, x] denotes the conditional mean frailty at time t for persons of 
age x. Further, the mean frailty can be calculated in terms of the integrated 
individual intensity as 

 ,t I (E [ | 1 , ) ,x t x2 1
= +

-
s]Z _ i  (13)

where ,x
x

m( , ) ( )I t x t us
I= + - .duu0

#

We will denote the senescent component of the population intensity in (12) 
by ms (t, x), i.e. ms (t, x)  =  E [Z | t, x]   ms

I(t, x). It follows from Proposition A.3 that 
E [Z | t, x] can also be expressed in terms of the integrated ms .

To capture the idea that the mortality of an individual is affected by both 
accumulating and non-accumulating factors we will write the (baseline) individual 
intensity in the form 

 ,x-s ( ,t
x

( , ) ) ( ) .expt x x g u t u du= +m kI
0

b l#  (14)

We think of k as representing the current level of treatment/health at time t 
for persons of  age x, while the accumulating factor g represents the aging 
process. The idea is that g(t, x) represents the increase in (log) mortality caused 
by aging at time t for persons of age x. Hence, to get the accumulated effect 
of aging one needs to integrate from age 0 at the time of birth, t  –  x, to the 
current age x at time t.

2.2.3. Specifi cation

We will consider the following specialization of the model given by (11) and (14):

 + 0( , ) ( ) ( )g t x g g t g x1 2 0 3= + ,t - x -  (15)

 +( ) ( (expt t1 2 0= -k k )),tk  (16)

 0( t( ) ( )),expt 1 2= + -g g g t  (17)
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with x0  =  60 and t0  =  2000. The substraction of (year) 2000 in the specifi ca-
tion of  g, k and g and 60 in g is done for interpretability reasons only.
Thus g(2000, 60)  =  g1 is the “aging” of  a 60-year old in year 2000, g2 is the 
additional aging across ages for each calender year, and g3 is the additional 
biological aging for each year of  age. Similarly, k(2000)  =  k1 and g(2000)  =  g1 
while k2 and g2 give the annual rates of  change. Notice, that k depends only 
on time since the obvious “missing” term, k3(x  –  x0), is already present 
through g1. The model has a total of  8 parameters; the 7 parameters appear-
ing in the specifi cation of  g, k and g together with the variance of  the frailty 
distribution, s2. As we will later demonstrate the model is able to capture
the main characteristics of  the data very well despite its parsimonious struc-
ture.

Some data sets show evidence of the so-called cohort effect, i.e. the phe-
nomenon that the mortality evolution of cohorts born in certain periods differ 
markedly from the evolution of neighboring cohorts, see e.g. Willets (2004); 
Richards et al. (2006). Cohort effects cannot be captured by the present spec-
ifi cation of the model, but they could be included if  so desired. Multiplicative 
cohort effects can be included by defi ning a parametric term depending on 
year of birth, i(b), and use k(t, x)  =  k(t) i(t  –  x) in (14). In this paper however 
we do not consider cohort effects.

From a computational perspective it is convenient to think of  the inten-
sities as functions of  birth year, rather than calender year, and age. By use 
of  Propositions A.1 and A.2 we can write m as 

 
(K

( ,t x)
1 , )

( ,
x

t x y dy

K t x x
2

0

=
+ -

-
m

s

)
(tg+ ),

#
 (18)

where K(b,v)  =  ms
I (b  +  v, v). This representation highlights the fact that the 

integral in the denominator relates to a given birth-cohort.
For the model above we have 

 g( ( (b, ) ) ( ,0) ) ( ) / .expK b x g b x x2 2 3= + + +k k 2 2g` j  (19)

That is, K(b, x) is log-quadratic in x (for fi xed b). When g2  +  g3  <  0 the integral 
in the denominator can be expressed in terms of the cdf of a normal distribu-
tion, while this is not possible when the sum is positive. In either case, it is easy 
to evaluate the integral numerically.

The model can be viewed as a generalization of  the Gamma-Makeham 
model of  Section 2.2.1. Indeed, that model is obtained by letting all of  g, k 
and g be constant (if  only g is constant we obtain the model proposed by 
Vaupel (1999)). However, unlike the Gamma-Makeham model the cohort 
mortality profi les of  our model will generally not have fi nite asymptotes as 
shown in Proposition B.1.
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2.2.4. Rates of improvement

When discussing improvement rates it is most illuminating to focus on the 
senescent part of the mortality. The background mortality component is pri-
marily included for the purpose of improving the fi t among young adults and, 
relative to the senescent part, its contribution to mortality is negligible for 
older age groups. Following the notation of Bongaarts (2005) we defi ne the 
rate of improvement in senescent mortality as 
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Generally, healthier conditions and other improvements in individual survival 
will mean that the contribution from the last term is positive. However, higher 
survival rates imply less selection and the average frailty of persons of age x 
will therefore increase to 1, the average frailty at birth, over time. Thus the con-
tribution from the penultimate term is negative. For old age groups with strong 
selection the changing frailty composition can substantially offset the general 
improvements but eventually the effect dies out and improvements occur.

For model (15)-(17) considered in this paper we can derive the asymptotic 
improvement rates. Assuming k2  <  0 and k2  +  g2 x  <  0 it follows from Proposi-
tion C.1 that 

    
,t

( ,t x
x

x+
E

for
[ | ]

( ) ( )
log

x
t

g g ts 2 2 2 2" "
2

2
3= - - - +k) .k

Zr  (21)

Thus in the limit rates of improvement will be linear in age. However, the frailty 
term implies that for old age group improvement rates can be substantially lower 
for a long time before eventually approaching their long-run level. In extreme 
cases the frailty term may even dominate the term representing general 
improvements, in which case ASDR’s will increase for a period before starting 
to decrease. This effect has been proposed as a possible explanation for the 
lack of improvement in life expectancy at advanced ages in the Netherlands, 
see Nusselder and Mackenbach (2000). However, we do not fi nd support for 
increasing ASDR’s in the data analyzed in this paper.

2.2.5. Estimation

We next want to estimate the parameters of model (15)-(17) using the reference 
data. Since the intensity surface is a continuous function of  time and age, 
while data is aggregated over calender years and one year age groups, we 
defi ne, for integer values of t and x,

       ( (m ( , ) ( , ) , 1) 1, ) ( 1, 1)t x t x t t x t x
4
1

ref = + + + + + + +m m m mx_ i (22)
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to represent the average intensity over the square [t, t  +  1)  ≈  [x, x  +  1) of  the 
Lexis diagram.6 We will use the Poisson-model in (2) with mref (t, x) given by 
(22) to fi nd the MLE, q, of  the parameters q  =  (s,  g1,  g2,  g3,  k1,  k2,  g1,  g2). This 
is achieved by maximizing the log-likelihood function
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where the last term does not depend on q and hence need not be included in 
the maximization. It is straightforward to implement the log-likelihood func-
tion and to maximize it by standard numeric optimization routines. We have 
used the optim method in the freeware statistical computing package R for 
our application.

Generally, maximum likelihood estimates are (under certain regularity con-
ditions) asymptotically normally distributed with variance matrix given by the 
inverse Fisher information7 evaluated at the true parameter. As an estimate of 
the variance-covariance matrix we will use 

 Dq
1-l (-q qCov( ,2

= ))\  (23)

which can be computed numerically once q has been obtained. Using the  variance 
estimates and the approximate normality (approximate) 95%-confi dence 
intervals for the parameters can be computed as q ± 1.96 q(Var )\ , where 

q(Var )\  denotes the diagonal of qCov( )\ .
Bootstrapping constitutes an alternate approach to assessing the parameter 

uncertainty which does not rely on asymptotic properties, see e.g. Efron and 
Tibshirani (1993); Koissi et al. (2006). In short, the method consists of simu-
lating a number of new data sets, i.e. new death counts, given the observed 
exposures and the estimated intensities and calculate the MLE for each data set. 
The resulting (bootstrap) distribution refl ects the uncertainty in the parameter 
estimates. Although simple in theory the computational burden is in our case 
substantial as each maximization takes several minutes.

2.3. Spread modelling

The fundamental assumption behind the proposed method for modelling small 
population mortality is the existence of  an underlying (smooth) mortality 

6 There are other possibilities for defi ning mref  (t, x). For instance, mref  (t, x)  =  m(t  +  1/2,  x  +  1/2), or 
mref  (t, x)  =    11 u( , )s x dsdum + +

00
t## . If  the exposure is uniform over the square one may argue in 

favor of the latter defi nition, but it is cumbersome to implement and unlikely to yield any substantial 
differences.

7 The Fisher information is defi ned as minus the expected value of the second derivative of the log-
likelihood function, I(q)  =  –  E[D2

q l(q)|q ].
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surface, the trend, around which the small population mortality evolves. In this 
section we focus on modelling and estimating the deviations of  the small 
popu lation mortality from the trend.

2.3.1. Spread

For given underlying trend, mref, we will assume that subpopulation death counts 
are independent and distributed according to 

 ( , ) Poisson ( , ) ( , ) ,t x t x t xsub sub sub+ m ED _ i  (24)

where 

 t xm( , ) ( , ) ( )expt x t x y rsub ref= �m  (25)

with yt�  =  (y0, t,  …,  yn, t) and rx�  =  (r0, x,  …,  rn, x ) for some n. The spread 
between the mortality of  the subpopulation and the trend is modelled by the 
last term in (25). The regressors r0,  …,  rn determine the possible age-profi les 
of  the (log) spread, while y0,  …,  yn describe the evolution over time of  the 
corresponding components of the spread. We will refer to the y’s as the spread 
parameters.

As opposed to the elaborate trend model we have chosen to use a rather 
simple log-linear parametrization of the spread. We do this for two reasons. 
First, assuming the trend model captures the main features of the mortality 
surface we expect there to be only little structure left in the spread. Introduc-
ing a complex functional form for the spread therefore seems fruitless. Second, 
a complicated spread model would to some extent counter the idea of  the 
model. The spread is supposed to model only the random, but potentially 
time-persistent, fl uctuations around the underlying mortality evolution.

Regarding the choice of  dimensionality, n, we are faced with the usual 
trade-off. A high number of regressors can fi t the spread evolution very pre-
cisely, but there is a risk of overfi tting thereby impairing forecasting ability. Also, 
a high number of spread parameters are harder to model and will, typically, 
increase forecasting uncertainty. A low number of  regressors, on the other 
hand, will fi t the spreads less well and can be expected to capture only the 
overall shape. However, a low number of  spread parameters are easier to 
model and, generally, provide more robust and less uncertain forecasts.

For a given number of  regressors there are essentially two ways to pro-
ceed. Either, the regressors are specifi ed directly and only the spread param-
eters are estimated, or both regressors and spread parameters are estimated 
simultaneously from the data. We prefer the former method due to ease of 
interpretability of the spread parameters and presumed better forecasting abil-
ity; although we recognize that the latter method provides a better (with-in 
sample) fi t.
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Specifi cally, we propose to parameterize the spread by the three regressors 

 1,r ,0 =x  (26)

 ( 60)/r ,1 = - 40,xx  (27)

 ( 120 9160/3) /1000,r x,2 = - +2
x x  (28)

which describe, respectively, the level, slope and curvature of the spread. For 
ease of interpretability the regressors are chosen orthogonal and they are nor-
malized to (about) unity at ages 20 and 100.8 The number of regressors refl ects 
a compromise between fi t and ease of modelling which appears to work well 
in our application.

Due to the assumed independence of death counts the MLE of the spread 
parameters for year t depends only on data for that year. For each year of 
subpopulation data we obtain the MLE for yt by maximizing the log-likelihood 
function 

 t tx xsub ( ,t x
x

( ) ( , ) ( ) ( , ) constantexpl D y r t x y r t xsubreft = - +� � ,m) Ey /

where mref  (t, x) is calculated with the maximum likelihood estimates from Sec-
tion 2.2.5 inserted. Note that the parametric form of the underlying trend 
ensures that we can calculate mref  (t, x) for all x and t. Thus the age and time 
windows for which we have data for the sub- and reference population need 
not coincide, or even overlap. In practice, of course, we expect there to be at 
least a partial overlap. For example, if  the subpopulation is the current and 
former members of a specifi c pension scheme, or a specifi c occupational or 
ethnic group, we might have only a relatively short history of data, while we 
might have a considerably longer history of  national data which we might 
want to use as reference data.

2.3.2. Time dynamics

The multivariate series of spread parameters describe the evolution in excess 
mortality in the subpopulation relative to the reference population. Over time 
we expect the two populations to experience similar improvements and we 
therefore believe the spread to be stationary rather than showing systematic 
drift. We also expect the spread to show time-persistence. If  at a given point 

8 In the application we use mortality data for ages 20 to 100, i.e. 81 one-year age groups. Seen as 
vectors the three regressors are orthogonal w.r.t. the usual inner product in �81. The regressors are 
normalized such that r2, 20  =  – 1 and r2, 100  =  1, while r3, 20  =  r3, 100  =  1.053. If  desired we can obtain 
r3, 20  =  r3, 100  =  1 by changing the normalization constant from 1000 to 3160/3 in the defi nition of r3.
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in time the mortality of  the subpopulation is substantially higher or lower 
than the reference mortality we expect it to stay higher or lower for some
time thereafter. Finally, we expect the spread parameters to be dependent 
rather than independent. The regressors are chosen to have a clear interpreta-
tion, but we do not expect, e.g. the level and the slope of the spread to develop 
independently of each other over time.

The simplest model meeting these requirements is the vector autoregressive 
(VAR) model which we will adopt as spread parameter model. Specifi cally we 
suggest to use the Gaussian VAR(1)-model 

 + tAyt t 1= - e ,y  (29)

where A is a three by three matrix of autoregression parameters and the errors 
et are three-dimensional i.i.d. normally distributed variates with mean zero and 
covariance matrix W, i.e. et   +  N3 (0, W).

By not including a mean term in the model we implicitly assume that the 
spread will converge to zero (in expectation) over time. We believe this is a 
natural condition to impose for the application to Danish data with an inter-
national reference data set considered in this paper. Indeed, it is hard to justify 
the opposite, that Danish mortality should deviate systematically from inter-
national levels indefi nitely even if  historic data were to suggest it. For other 
applications one may wish to include a mean term in the model and thereby 
allow for systematic deviations. Similarly, one may wish to consider more 
 general VAR-models with additional lags to capture more complex time-
dependence patterns.

The parameters A and W of  model (29) can be estimated by the ar routine 
in R treating the time series of estimated spread parameters, yt, as observed 
variables. The routine offers various estimation methods. It would have been 
in the spirit of  this paper to use maximum likelihood estimation, but unfor-
tunately this option is only implemented for univariate time series. Instead we 
use Yule-Walker estimation which obtains estimates by solving the Yule-Walker 
equations, cf. e.g. Brockwell and Davis (1991). In our application the estimated 
A defi nes a stationary time series, i.e. the modulus of A’s eigenvalues is smaller 
than one, for both men and women. However, in general there is no guarantee 
for this. As with all statistical analysis where data contradicts modelling 
assumptions one will then have to propose a more suitable model, e.g. intro-
duce a mean term or additional lags, and reiterate the analysis.

2.3.3. Forecast

Forecasting in the VAR-model (29) is based on the conditional distribution of 
the future values of the spread given the observed values. Assuming year T to 
be the last year of observation and h to be the forecasting horizon we need to 
fi nd the conditional distribution of yT + h given the observed values. Due to the 
Markov property of the VAR(1)-model this distribution depends on the last 
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observed value, yT , only. Expanding the data generating equation we obtain 
for h  $  1

 hT )h+ | (y N VT h+ , ,my

where mh and Vh are given by 

 �( .AW= )iA Ah
h

T h
i

i

h

0

1
=

=

-

m V,y /

From these expressions forecasted values for future spread parameters
and corresponding two sided (pointwise) 95%-confi dence intervals are easily 
obtained as 

 hh+T h !CI ( ) 1.96 diag( ) .m V%95 =y

Note that due to stationarity the forecasting uncertainty will increase towards 
a fi nite limit as the forecasting horizon increases. Thus the deviations of the 
subpopulation from the reference population are bounded (in probability) over 
time. By use of equation (25) we further have 

 h xx,h+,h+ xhCI ( ) ( ) 1.96 .log logT x T x r Vm r% sub ref95 != + � �m m r_ i

The stated confi dence intervals only refl ect the stochasticity of the VAR-model 
itself  without taking the parameter uncertainty into account. They are there-
fore, in a sense, the “narrowest” possible confi dence intervals.

Confi dence intervals incorporating parameter uncertainty, i.e. uncertainty 
in parameter values, can be constructed by simulating the parameters of the 
trend and spread model and generate stochastic forecasts for each simulated 
parameter set. In a Bayesian analysis the parameters would be simulated from 
their posterior distribution, see e.g. Cairns et al. (2006) and Dowd et al. (2006), 
while in a frequentist analysis like the present the parameters would be simu-
lated from the distribution of the estimators. In this paper however we will not 
address the issue of parameter uncertainty.

A third level of uncertainty is concerned with the uncertainty of the model 
itself, i.e. the fact that we use a parametric trend and a stochastic spread with 
a given structure. The actual future trend is unknown and other trend models, 
e.g. models including stochastic components, will give rise to other forecasts. 
This source of uncertainty is called model uncertainty; the interested reader is 
referred to Cairns (2000) for a general discussion of how all three sources of 
uncertainty can be assessed coherently in a Bayesian framework. In this paper 
we do not consider model uncertainty.

We have concentrated on assessing the uncertainty of a single ASDR at a 
future point in time. Since the conditional distribution of  the entire future 
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{yT  + 1,  …} given yT is readily available we can also derive simultaneous confi -
dence intervals for any collection of ASDR’s by the same method. In principle, 
it is therefore possible to derive analytic confi dence intervals for any func-
tional of  the intensity surface. In practice, however, most quantities of  inter-
est, e.g. remaining life expectancy, are too complicated to allow analytic 
derivations. Instead it is necessary to resort to Monte Carlo methods to assess 
forecasting uncertainty of  any but the simplest quantities. Fortunately, this is 
straight forward to implement. We simply simulate a large number of  realiza-
tions from the VAR-model (29) and calculate the corresponding intensity 
surface by (25). For each surface we calculate the quantity of  interest and we 
thereby obtain (samples from) the forecasting distribution. This will be illus-
trated in Section 3.4.

3. APPLICATION

To demonstrate the model in action we consider the case that gave rise to
the name SAINT, namely Denmark as the (sub)population of interest and a 
basket of  developed countries as the reference population. The model is 
applied to each sex separately.

3.1. Data

Data for this study originates from the Human Mortality Database,9 which 
offers free access to updated records on death counts and exposure data for a 
long list of countries. The database is maintained by University of California, 
Berkeley, United States and Max Planck Institute for Demographics Research, 
Germany.

We will use both Danish data and a pooled international data set consisting 
of data for the following 19 countries: USA, Japan, West Germany, UK, France, 
Italy, Spain, Australia, Canada, Holland, Portugal, Austria, Belgium, Switzer-
land, Sweden, Norway, Denmark, Finland and Iceland. This set is chosen among 
the 34 countries represented in the Human Mortality Database because of their 
similarity to Denmark with respect to past and presumed future mortality. 
Table 6 in Appendix D contains a summary of the data.

The subsequent analysis uses data from the years 1933 to 2005 and ages 20 
to 100. As far as the time dimension is concerned the cut points are deter-
mined by the availability of US data. Concerning the age span the analysis 
could in principle be based on all ages from 0 to 110, which are all available 
in the Human Mortality Database. However, since the prime focus is adult 
mortality and since the mortality pattern at young ages differs markedly from 
adult mortality all ages below 20 have been excluded. For very high ages the 

9 See www.mortality.org
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quality of data is poor and sometimes based on disaggregated quantities and 
for this reason all ages above 100 have also been excluded.10

The international data set is constructed as the aggregate of the 19 national 
data sets. For each year from 1933 to 2005 and each age from 20 to 100 the 
international death count and international exposure consists of, respectively, 
the total death count and total exposure of those of the 19 countries for which 
data exists for that year. Measured in terms of death counts and exposures the 
international data set is more than 100 times larger than the Danish data set.

Since we use an aggregate data set there is an issue regarding the choice of 
data window and the availability of data for the individual countries. Populations 
entering the data during the estimation period may lead to undesirable structural 
breaks in data and for that reason we may choose to use only the period for 
which data exist for all countries. On the other hand we want to use as long 
an estimation period as possible to estimate long-term trends. As a compromise 
between these two concerns we have chosen the data period from 1933 to 2005 
since this is the period for which we have US data and also data for the major-
ity of the other large populations. Of the large populations only Japan (enter-
ing in 1947) and West Germany (entering in 1956) enter the data later, and 
neither of these two late entrances seem to cause structural breaks in data.
At the other end of  the data window we have data for all countries except 
Australia and Italy (both leaving 2004).

3.2. Trend

Data is illustrated in Figure 1 in Section 1.1. The fi gure shows Danish and 
international female death rates for ages 40, 60 and 80. Compared to Denmark 
the international development in death rates has been quite stable with only 
slowly changing annual rates of improvement. The Danish mortality evolu-
tion, on the other hand, shows a much more erratic behavior with large year-
to-year variation in improvement rates. The Danish level seems to follow that 
of the international community in the long run, but there are extended periods 
with substantial deviations. The most striking of these is the excess mortality 
of Danish females around age 60 which emerged in 1980, peaked more than 
a decade later and is still present today although less pronounced. From Fig-
ure 1 and analogous plots for males and other age groups it seems reasonable 
to think of Danish mortality rates as fl uctuating around a stable international 
trend.

We have used the international data set to estimate the trend model 
described in Section 2.2.3. Table 1 contains maximum likelihood estimates of 
the eight parameters and corresponding two sided 95% confi dence intervals. 
The narrow width of the confi dence intervals refl ects the fact that, relative to 

10 In some countries and some years data for ages younger than 100 years is also based on disaggre-
gated quantities, but we suspect this to be of minor importance.
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the amount of  data, we have a very parsimonious model. Using a similar 
model Barbi (2003) reports standard errors of the same magnitude in an appli-
cation to Italian data. The small standard errors indicate that the parameters 
are well determined, but this does not necessarily imply a good fi t. The fi t of 
the model can be assessed graphically on Figure 2 which shows international 
female mortality rates together with the estimated trend. Overall, it appears 
that the model does a remarkably good job at describing the data. There are 
appreciable deviations only for the very youngest and very highest ages.
For now we settle with this informal graphical inspection of goodness-of-fi t, 
but we will return to the issue more formally in Section 4.

FIGURE 2: Historic development (dashed line) in international female log mortality from 1933 to 2005
for the age groups 20, 40, …, 100. Model estimate of trend with parameters given

in Table 1 is superimposed (solid line).

TABLE 1

MAXIMUM LIKELIHOOD ESTIMATES AND 95% CONFIDENCE INTERVALS FOR THE TREND MODEL

SPECIFIED IN SECTION 2.2.3. THE ESTIMATION IS BASED ON INTERNATIONAL MORTALITY DATA

FROM 1933 TO 2005 FOR AGES 20 TO 100 YEARS.

Parameter
Women Men 

Estimate 95%-CI Estimate 95%-CI

s   4.2860  ·  10 – 1 ± 1.6  ·  10 – 4   2.6243  ·  10 – 1 ± 2.3  ·  10 – 4

g1   9.8965  ·  10 – 2 ± 2.3  ·  10 – 6   1.0551  ·  10 – 1 ± 2.2  ·  10 – 6

g2   4.7856  ·  10 – 6 ± 5.1  ·  10 – 8   8.3744  ·  10 – 5 ± 3.7  ·  10 – 8

g3   1.3103  ·  10 – 3 ± 1.0  ·  10 – 7   5.5903  ·  10 – 5 ± 8.6  ·  10 – 8

k1 –  8.7819  ·  100 ± 1.7  ·  10 – 4 –  1.0576  ·  101 ± 1.6  ·  10 – 4

k2 –  1.8510  ·  10 – 2 ± 5.8  ·  10 – 6 –  1.7827  ·  10 – 2 ± 5.0  ·  10 – 6 

g1 –  1.1810  ·  101 ± 1.9  ·  10 – 3 –  7.5222  ·  100 ± 8.4  ·  10 – 4 

g2 –  8.9038  ·  10 – 2 ± 3.2  ·  10 – 5 –  2.5005  ·  10 – 2 ± 2.0  ·  10 – 5
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The model has three parameters to describe three different types of improve-
ment in mortality over time. The parameters g2 and k2 affect the improvement 
in senescent mortality, while the reduction in background mortality is deter-
mined by g2. By Proposition C.1 we know that the limiting rate of improvement 
in senescent mortality is given by –  (k2  +  g2 x) for ages x for which this quantity 
is positive.11 Since g2 is positive for both sexes the (limiting) rate of improvement 
is decreasing in age as expected. Due to frailty we also have that the limiting 
improvement rate is achieved more slowly for higher ages than for lower ages. 
This further “steepens” the age-profi le of improvement rates and causes it to 
change shape over time as illustrated in Figure 3. Note in particular how the 
improvement rate for 100-year-olds is projected to double over the next cen-
tury. The projected increase in improvement rates can also be observed from 
the curved projection in Figure 2 for this age group (the effect is also present 
for the younger age groups but much less pronounced).

The value of k2 is estimated to about –  1.8% for both women and men. The 
value of g2, however, is almost 20 times larger for men than for women. This 
implies that whereas the limiting age-profi le of improvement rates is almost 
fl at for women the age-profi le will remain steep for men. Thus 100 year-olds 
females will eventually experience the same annual rate of improvement as the 
younger age groups, while old men will continue to have lower improvement 
rates than younger men.

The improvement rate of background mortality is estimated to about 9% 
for women and about 2.5% for men. The large value for women is due to the 
dramatic decrease in mortality among the 20 to 30 year-olds in the beginning 
of  the observation period, cf. Figure 2. However, since female background 

11 With the estimated parameter values this is satisfi ed up to age 213 for men and 3870 years for 
women, i.e. for all ages of practical relevance.

FIGURE 3: Rate of improvement, rs (t, x), in female senescent mortality.
Based on parameter values from Table 1.
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mortality is now negligible compared to senescent mortality further reductions 
will have virtually no effect on (total) mortality even at young ages. For men, 
on the other hand, background mortality is much higher (as can be seen by 
the difference in the values of g1) and future reductions will have a substantial 
effect on young age mortality.

The estimated level of heterogeneity, s, is higher for women than for men. Since 
the s parameter controls the “delay” in achieving the asymptotic rate of improve-
ment, i.e. the fi rst term in (48) of Proposition C.1, this implies that the asymptotic 
rate is approached slower for women than for men. It is not clear why this is the 
case, but a gender difference of the same magnitude was found by Barbi (2003).

The remaining parameters control the age profi le of (senescent) mortality. 
As expected the parameter for the overall level, k1, and the parameter for fi rst-
order age dependence, g1, are both estimated to be smaller for women than for 
men. Only the second-order age dependence parameter, g3, is higher, albeit still 
small, for women than for men. The parameter is positive for both sexes imply-
ing that aging is accelerating with age. Thus for all ages of practical relevance 
female mortality is estimated to be lower than male mortality, but for very 
advanced ages female mortality will in fact exceed male mortality.

3.3. Spread

We will apply the three factor spread model of  Section 2.3 to describe the 
Danish fl uctuations around the international level. The estimated spread series 
for women are shown in Figure 4, where the excess mortality of Danish women 
from around 1980 onwards is clearly visible. Note that simultaneously with the 
increase of the level the curvature has decreased. This means that only women 
around age 60 experience excess mortality while the mortality of very young 
and very old Danish women is similar to the international level.

In 2005 the estimated spread parameters were (0.17,  0.06,  –  0.16) for women 
and (–  0.01,  0.15,  0.08) for men. This in fact implies an excess mortality of 
more than 25% for Danish women of age 60, but only 6% at age 100. Danish 
men, on the hand, are very much in line with the international level having an 
excess mortality of 3% at age 60.

The parameter estimates of the VAR(1)-model, which describes the dynam-
ics of the spread series, are 
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for men. In both cases the A matrices give rise to stationary series. Note that 
diagonal and off-diagonal elements of A are of the same magnitude because 
of the high interdependence between the three spread components. Also the 
errors are highly correlated.

Figure 4 shows the mean forecast for the spread parameters for women 
with 95% confi dence intervals. Due to stationarity all three spread components 
are forecasted to converge to zero. However, due to the structure of  A the 
convergence is not necessarily monotone. The slope, for instance, starts out 
positive but is forecasted to become negative before approaching zero.

The width of the confi dence intervals refl ects the observed variation in the 
spread over the estimation period. The confi dence intervals expand quite rap-
idly to their stationary values indicating that substantial deviations can build 
up or disappear in a matter of decades. The confi dence intervals do not include 
parameter uncertainty, but only the uncertainty induced by the error term of 
the VAR-model. Incorporating parameter, or indeed model, uncertainty will 
most likely lead to even wider confi dence intervals.

3.4. Forecasting life expectancy

Life expectancies are an intuitively appealing way to summarize a mortality 
surface. Letting m denote an intensity surface which is constant over Lexis 
squares, cf. Section 2.1.1, and letting t and x be integers we get the following 
approximation for the cohort mean remaining life time of individuals born at 
t  –  x (at time t)
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for some large M. Similarly, the period mean remaining life time is
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The cohort life expectancy is calculated from the ASDR’s of a specifi c cohort, 
i.e. along a diagonal of the Lexis diagram, while the period life expectancy is 
calculated from the ASDR’s at a given point in time, i.e. along a vertical line 
of  the Lexis diagram. The cohort life expectancy represents the actual life 
expectancy of a cohort taking the future evolution of ASDR’s into account. 
The period life expectancy, on the other hand, is the life expectancy assuming 
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FIGURE 4: Estimated and forecasted spread parameters for Danish women with two sided
pointwise 95% confi dence intervals.
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402 S.F. JARNER AND E.M. KRYGER

FIGURE 5: Forecasting distribution of the cohort remaining life expectancy ec(2005, 60) for Danish women. 
The mean and median (vertical line) are both 27.06, and the standard deviation is 0.32.

Based on 100,000 simulations.

no future changes in ASDR’s. For this reason the cohort life expectancy is 
(substantially) higher than the corresponding period life expectancy.

In Table 2 we have shown selected cohort and period life expectancies
for women based on point estimates of  the intensities (obtained from the
mean forecast of the spread). Period life expectancies based on observed death 
rates for 2005 are also shown. We note that they correspond very well with the 
model estimates indicating a good fi t of the model in the jump-off year.

The table contains period life expectancy forecasts up to year 2105 while 
cohort life expectancies are forecasted only up to year 2025. In principle,
we can calculate cohort life expectancies for 2105 also. However, assuming a 
maximal age of 120 years this would require that we project ASDR’s to year 
2205. No matter how good a model, we cannot give credence to quantities 
based on projections 200 years into the future and we have therefore chosen 
to omit the numbers.

The current excess mortality for Danish women can be seen as lower period 
life expectancies in 2005. The Danish cohort life expectancies are also lower 
than the international levels but the differences are smaller due to future 
 convergence of  Danish rates to the international trend. After 20 years the 
 differences between Danish and international life expectancies have virtually 
disappeared.

The forecasting uncertainty of complicated functionals such as life expec-
tancy can be assessed by Monte Carlo methods as described in Section 2.3.3. 
As an illustration of this approach we show in Figure 5 the forecasting distri-
bution for the cohort life expectancy of a 60-year-old Danish women in 2005, 
ec(2005, 60), based on 100,000 simulations. The empirical mean is 27.06 which 
is very close to the point estimate of 27.05 in Table 2. Note that this need not 
necessarily be true in general for non-linear functionals. Confi dence intervals 

94838_Astin41-2_04_Jarner.indd   40294838_Astin41-2_04_Jarner.indd   402 2/12/11   08:292/12/11   08:29



 MODELLING ADULT MORTALITY IN SMALL POPULATIONS  403

can be obtained using either the empirical standard deviation of 0.32 and a 
normal approximation, or the percentiles of interest can be calculated directly 
from the sample.

4. GOODNESS-OF-FIT

Evaluation of  a statistical model’s performance is of  uttermost importance, 
and hence we shall devote this section to investigating the fi t of the SAINT 
model. To this end we evaluate the model’s fi t within-sample as well as out-of-
sample. Having applications in mind we shall emphasize the latter. Our bench-
mark is the widespread “Poisson version” of  the Lee-Carter (LC) model, cf. 
Brouhns et al. (2002). This model assumes that 

 txx( , ) Poisson ( , ) ( , ) with ( , ) ( ),expt x t x t x t x+ = + b kEm m aD ^ h  (32)

where the parameters are subject to the constraints t x= =t xand0 1k b/ /  to 
ensure identifi ability.

To assess the performance we measure the cellwise errors in death counts, 
i.e. the deviation from the expectation in the hypothesized Poisson distribu-
tion. We then sum these, their absolute values or their squares. For ease of 

TABLE 2

UPPER PANEL: COHORT REMAINING LIFE EXPECTANCY IN YEARS FOR WOMEN.
THE NUMBERS ARE BASED ON MODEL FORECASTS AND CALCULATED USING (30) WITH M  =  120.

LOWER PANEL: PERIOD REMAINING LIFE EXPECTANCY IN YEARS FOR WOMEN. THE NUMBERS ARE BASED ON 
MODEL FORECASTS AND CALCULATED USING (31) WITH M  =  120. THE PERIOD REMAINING LIFE EXPECTANCY 

BASED ON OBSERVED DEATH RATES FOR YEAR 2005 WITH M  =  110 IS SHOWN IN BRACKETS.

Year

International Denmark

Age Age

20 60 70 80 20 60 70 80

2005 71.67 27.37 17.88 10.17 71.67 27.05 17.41  9.66

2025 74.96 30.27 20.36 11.98 74.96 30.26 20.34 11.96

Year

International Denmark

Age Age

20 60 70 80 20 60 70 80

2005 62.92 24.85 16.54  9.64 60.89 23.10 15.11 8.68

 (62.84) (25.12) (16.83) (9.70) (60.89) (23.11) (15.19) (8.84)

2025 65.98 27.43 18.75 11.28 65.91 27.36 18.69 11.24

2045 68.94 30.02 21.04 13.08 68.94 30.02 21.04 13.08

2105 77.27 37.70 28.15 19.13 77.27 37.70 28.15 19.13
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interpretation and comparability across periods of different length we normal-
ize by the total number of deaths in the two former cases. Thus we consider

 
,t x,t x

( , ) ( , ) ( , ) ( , )G D t x t x E t x D t x1 = - m_ i/ /

 
, ,t x t x

( , ),D t x1= - m ( , )t x ( , )E t x/ /  (33)

 ( ,D t x m
, ,t x t x

) ( , ) ( , ) ( , ),G t x E t x D t x2 = -/ /  (34)

 
,t x

( , ) ( , ) ( , ) ,G D t x t x E t x3
2= - m^ h/  (35)

where m is either fi tted or forecasted. The forecasted values for the SAINT model 
(LC model) are based on the mean forecast of the spread (k-index).

Notice that G1 is the weighted (by actual deaths) average of  1  –  m(t, x)  / 
m(t, x) . log (m(t, x)  /  m(t, x)). The weighted average of  the latter therefore 
being a comparable measure of fi t. In comparing some versions of the LC 
method Booth et al. (2006) calculated the unweighed averages of log (m(t, x)  / 
m(t, x)) and its absolute value. Modulo a log approximation this corresponds 
to weighing by ( m(t, x) E(t, x)) – 1 in (33). Apart from these suggestions, most 
mortality models we have encountered base their evaluation of fi t on graphical 
inspection.

From a statistical perspective it could be argued that the deviations between 
observed and fi tted death counts should be normalized by m ( , ) ( , )t x E t x  as 
this is the standard deviation of the assumed Poisson distribution. This nor-
malization will place more weight on the fi t in the young and very old age 
groups, whereas the current version is more infl uenced by the age groups with 
many deaths in absolute numbers, i.e. the age groups from, say, 50 to 90 years.
The current version is chosen because from both a demographic and a fi nancial 
point of view the death rates of the latter age groups are most important, and 
we are therefore particularly interested in how the models fi t and predict death 
rates for these groups.

G2 and G3 evaluate the fi t in two different ways and we shall use both 
measures. As a supplement we shall also use G1 to measure overall bias. Alter-
natively, one could evaluate how well key fi gures such as annuity values and 
remaining life expectancy match, but we do not pursue that here.

4.1. Within-sample performance

Within-sample both models perform well with an absolute relative error of 
about 6%. Table 3 reveals that there is not much to choose between the two, 
but it is encouraging that the more sparsely parameterized SAINT model fi ts 
at least as good over any subperiod considered. We choose to use G2 because 
it is comparable across sexes and periods, but G3 gives the same conclusion.
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Recently, Dowd et al. (2010b) came up with some statistically testable 
 suggestions to measure goodness-of-fi t for mortality models, which we shall 
not go into — partly because we are somewhat skeptical of  the underlying 
independence and dispersion assumptions.

4.2. Out-of-sample performance

The papers we are aware of  are to a large extent silent regarding the out-
of-sample performance of their respective models. Two exceptions are Booth 
et al. (2006) as mentioned above, and Dowd et al. (2010a), whose ideas are 
appealing. For sake of brevity we shall not perform any of their four suggested 
inspections in depth here.

In essence we believe that a good mortality forecast must fulfi ll two equally 
important criteria. First, the model should provide accurate forecasts over 
short and long horizons. And secondly, using different input data the mortality 
forecasts ought to be as little sensitive towards the choice of estimation period 
as possible, i.e. robust.

4.2.1. Accuracy

To evaluate the accuracy we will calculate G3 for forecast horizons ranging 
from 10 to 35 years for two different, but overlapping, estimation periods.
The results are displayed in Table 4 from which we conclude (albeit based
on limited evidence and overlapping estimation periods) that the LC method 
predicts slightly more accurately over short forecast periods, whereas on long 
horizons the SAINT model’s performance is superior. Further analysis has 
indicated that the tipping point lies between about fi ve and 15 years’ forecast.

At the cost of potentially even worse long run forecasts it has been sug-
gested to improve the short run accuracy by calibrating the Lee-Carter model 
to the latest observed death rates. This would likely reinforce the difference 
between the two models.

Very short term forecasts (not shown) are quite accurate in both cases —
because of short term smoothness of data and the relatively dense parametri-
zation. All conclusions above apply to men as well.

TABLE 3

WITHIN-SAMPLE ERROR MEASURED BY G2 (AS PERCENTAGES). DANISH DATA.

Estimation
period

Women Men

SAINT Lee-Carter SAINT Lee-Carter

1933-1950 5.08 5.38 5.30 5.91

1933-1970 5.02 5.55 5.39 6.09

1933-1990 6.00 6.55 5.00 5.78

1933-2005 6.25 6.31 4.89 5.96
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For the same estimation and forecast periods we have calculated G1 as a 
measure of bias. The results are shown in Table 5. Note that negative values 
imply upward bias of death rates, i.e. projected death rates are higher than 
realized death rates. For the short estimation period the SAINT model has a 
higher bias than LC, while the bias of the two models is essentially the same 
for the long estimation period.

Examining the contributions of G1 more thoroughly (numbers not shown) 
reveals that there is a seemingly systematical pattern in the errors of the SAINT 
model with most of the upward bias concentrated at ages below 40. Death 

TABLE 4

OUT-OF-SAMPLE ERROR FOR DIFFERENT ESTIMATION PERIODS AND DIFFERENT FORECAST PERIODS

MEASURED BY G3 (NORMALIZED BY 106). DANISH WOMEN.

Forecast period length

Estimation
period

10 15 20

SAINT LC SAINT LC SAINT LC

1933-1950 0.69 0.43 0.93 0.69 1.34 1.31

1933-1970 1.48 2.32 2.39 4.27 3.50 6.96

Forecast period length

Estimation
period

25 30 35

SAINT LC SAINT LC SAINT LC

1933-1950 2.43 2.81 4.26 5.34 6.44 8.58

1933-1970 4.82 9.70 6.22 13.0 7.27 15.7

TABLE 5

OUT-OF-SAMPLE ERROR FOR DIFFERENT ESTIMATION PERIODS AND DIFFERENT FORECAST PERIODS

MEASURED BY G1 (AS PERCENTAGES). DANISH WOMEN.

Forecast period length

Estimation
period

10 15 20

SAINT LC SAINT LC SAINT LC

1933-1950 – 7.97 – 1.64 – 6.84 – 0.62 – 6.36 – 0.33

1933-1970 – 4.86 – 3.28 – 3.64 – 2.35 – 2.10 – 1.21

Forecast period length

Estimation
period

25 30 35

SAINT LC SAINT LC SAINT LC

1933-1950 – 6.82 – 1.04 – 6.97 – 1.51 – 6.49 – 1.39

1933-1970 +0.33 +0.80 +1.83 +1.93 +2.78 +2.53
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rates for ages 40-60 are in fact slightly downward biased, while death rates
for ages above 60 are essentially unbiased. Due to its structure the LC model 
suffers no such systematic age bias.

Dowd et al. (2010a) point out that most mortality forecasts are upward 
biased. We fi nd the same, but of course this is not an intrinsic feature of the 
models.

4.2.2. Robustness

We will check robustness in two ways — by examining the stability of forecasts 
towards the inclusion of additional years in each end of the data window. This 
serves two distinct purposes. Adding extra years in the “left” side of the interval 
we examine the sensitivity towards the otherwise arbitrary choice of left end 
point of the input data. On the other hand adding years in the “right” side 
allows analysis of the desired feature that forecasts do not change substantially 
when the model is calibrated using new data. Of course these two tests are 
closely linked. For the sake of brevity we will provide graphical indications 
only but obviously a version of the G3 measure, or something similar, should 
be considered as well to assess how close forecasts based on different data are.

For the former analysis see Figure 6. This graphical inspection clearly 
 indicates that the SAINT model is more “backward robust”. The particular 
evidence is based on two scenarios only, but in fact the conclusion applies to 
other ages and periods and to Danish men as well.

Finally, we consider the stability towards including new data. This is essen-
tially no different from the preceding analysis, and the conclusion is repeated 
from above. Figure 7 compares mortality intensity forecasts at two key ages 
and suggests that the SAINT model is slightly more “forward robust”. This 
conclusion is also representative across sexes, ages, and estimation periods.

We do not believe in the existence of an intrinsically optimal length for the 
sample period. Hence, we do not investigate this. Instead we have faith in the 
underlying model and use as much data as possible whenever it is deemed 
being of an acceptable quality.

As a closing remark we note that any full evaluation of the out-of-sample 
performance should take the entire fi tted and forecasted distribution into 
account, cf. Dowd et al. (2010a). At fi rst glance our model seems to provide 
reasonably wide distributions on both short and long horizons, thus nicely 
accompanying the reasonable forecasts. Presently we shall not, however, elab-
orate further on this.

CONCLUDING REMARKS

The mainstream in mortality modeling builds on linear time series of unob-
served underlying random processes. This typically works very well when the 
population in question is suffi ciently large that realised death rates are smooth, 
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FIGURE 6: Mortality intensity forecasts based on two different estimation periods.
Upper panel: SAINT model. Lower panel: Lee-Carter model. Danish women.

in particular over relatively short forecast horizons. Over longer horizons, and 
for small populations on the other hand the performance of these models is 
less convincing, and the estimates may be very sensitive to the choice of input 
data. We therefore developed a two-step approach — modeling fi rst the mor-
tality of a larger reference population, then the mortality spread between the 
two populations.

We have left the choice of reference population a subjective one. The refer-
ence population should be related to the population of interest as we have to 
believe that the two populations share the same long term trend. Observing 
this, we recommend to choose it as large as possible for best identifi cation of 
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FIGURE 7: Mortality intensity forecasts based on four different estimation periods. 
Upper panel: SAINT model. Lower panel: Lee-Carter model. Danish women.

the trend. The analysis obviously depends on the choice of reference popula-
tion, but in this respect the choice of reference population is no different from 
the choice of estimation window, or indeed the choice of model.

In the presented model we have focused on forecasting a single population. 
However, the methodology can easily be extended to produce coherent, i.e. 
non-diverging, forecasts for a group of related populations by using the group 
as reference population and treat each population as a subpopulation of the 
group. Similarly, we could consider men and women as subpopulations of the 
same population rather than estimate separate models for each gender as done 
in the application.
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410 S.F. JARNER AND E.M. KRYGER

We have used a two-stage estimation routine in which we fi rst estimate
the trend parameters and then estimate the spread parameters with the trend kept 
fi xed. This approach can be justifi ed when the reference population is substan-
tially larger than the subpopulation, as in case of Danish and inter national data. 
For applications in which the reference and subpopulation are of comparable 
size one might consider to estimate the trend and the spread jointly. It is straight-
forward to write down the likelihood function so in principle this is possible, 
but it is numerically involved due to the large number of parameters involved.

The trend component of the SAINT model imposes structure on how mor-
tality can evolve over time and across ages. The parametric form provides insight 
into the improvement patterns and it guarantees biologically plausible forecasts. 
Compared to the Lee-Carter model the structure of  the SAINT model lead to 
more precise long-term forecasts at the price of higher bias. The higher bias was 
primarily for young ages which is not surprising as the focus of our modelling 
has been on old age mortality. The bias at young ages could undoubtedly be 
reduced by more careful modelling of these age groups if  so desired.

We have concentrated on the uncertainty generated by the stochastic term 
of the spread model. Taking account of parameter uncertainty also would be 
a useful extension to the present work. In the case of the trend model however 
the impact of including parameter uncertainty might be limited since the trend 
parameters are very well-determined, cf. Table 1. Another possibility therefore 
which might better refl ect the uncertainty of the trend would be to introduce 
stochastic terms in the trend model also, thus treating both the trend and the 
spread as stochastic processes.

APPENDIX A.
THE MULTIPLICATIVE FRAILTY MODEL

In this appendix we state and prove a number of results for the cohort-version 
of the multiplicative frailty model (11). Vaupel et al. (1979) consider the multi-
plicative frailty model for a single cohort and state results similar to ours.

For ease of reference we fi rst give some basic properties of G-distributions 
and two-dimensional mortality intensities and survival functions. Recall that 
the density of the G-distribution with shape parameter l  >  0 and scale param-
eter b  >  0 is given by 

 z (
(l

( - /)
)

, 0) .expf z z z1
$b

G
=

l -b l-

^ h  (36)

This distribution has mean bl and variance b2l. Letting l  =  b  – 1  =  s – 2 we 
obtain a G-distribution with mean 1 and variance s2.

The survival function, F(t, x), denotes the proportion of the cohort born 
at time t  –  x still alive at time t (at age x). Similarly, the individual survival 
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function, F(t, x; z), denotes the probability that a person with frailty z born at 
time t  –  x is still alive at time t. If  f denotes the density of the frailty distribu-
tion at birth we have

 ( , ;t x (f
3

F F( , ) ) ) ,t x z z dz=
0
#  (37)

while the conditional frailty density at time t for persons of age x is given by 

 ,
(

t
F

F
( | )

( ,
) ( , ; )

.f x
t x

f z t x z
=

)
z  (38)

The survival function can be expressed in terms of the force of mortality as 

 x- ,( )u t u+m duexpF ( , )t x
0

= -
x

,b l#  (39)

and, conversely,

 ,d(t +( ,t
d

F) .logx d
| 0

= - +
d =

m d
d

x )< F  (40)

The same relationships hold for F(t, x; z) and m(t, x; z).

Proposition A.1. Assuming (11) the population mortality surface is given by 

 s( ,t (E, ) [ | ] , ) (t x x t x t= +m m gI ),Z  (41)

where E[Z|t,x] denotes the conditional mean frailty at time t for persons of age x.

Proof. By (40), (37), (38) and (11) the population mortality satisfi es
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The result of  Proposition A.1 holds true regardless of  the assumed frailty 
distribution at birth. However, in order to obtain an analytically tractable 
model we will assume that frailties at birth follow a scaled G-distribution
with mean 1 and variance s2. Under this assumption the conditional frailty 
distributions are also G-distributed and explicit expressions for the conditional 
mean and variance can be derived. Let Z |(t, x) denote the conditional frailty 
distribution at time t for persons of age x.

Proposition A.2. Assuming (11) and Z  +  G with mean 1 and variance s2 then 
Z |(t, x)  +  G with mean and variance given by

 ,t IsE [ | ] 1 ( , ,x t x2= +
1-

)Z _ i  (42)

 ,t,t EVar[ | ] [ | ] ,x x2 2
= sZ Z  (43)

where ,xs( , ) ( )mI t x t u du= + -
x

uI
0
# .

Proof. Using (11), the individual survival function can be written 

 zF ( , ; ) ( , ) ( , ) ,expt x z I t x G t x= - -^ h  (44)

where ,xs( , ) ( )mI t x t u du= + -
x

uI
0
#  and x u+g (

x
( , ) )G t x t du= -

0
# . Insert-

ing (44) in (37) with f given by (36) for l  =  b  – 1  =  s – 2 we get
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 (45)

Finally, inserting (44) and (45) in (38 with f as above we obtain 

 ,t
I z I-+

x z| )
( , )

f
t x 1 ( , )t x

2

2

G
=

s
s s

-

-
- +

s

s
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( ,z e
^

_
`

h

i
j

which we recognize as a G-density with l  =  s – 2 and b  – 1  =  s  – 2  +  I (t, x). ¡

Proposition A.2 characterizes how the frailty composition of a given birth-
cohort changes over time. At early ages where the integrated intensity I (t, x) 
is small the selection is modest and the conditional mean and variance are 
close to the unconditional values of 1 and s2. As the intensity increases so 
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does I(t, x) and the conditional mean and variance decrease towards 0. Thus, 
over time the frailty distribution gets closer and closer to 0.

The following proposition shows that the conditional mean frailty can also 
be expressed in terms of  the senescent population mortality, i.e. the age-
dependent component of m. Denoting the senescent population intensity by ms 
it follows from Proposition A.1 that ms (t, x)  =  E[Z | t, x]  ms

I(t, x).

Proposition A.3. Under the assumptions of Proposition A.2

 s,t (E [ | ] , )expx H t x= - 2 ,Z _ i  (46)

where ,x((
x

, ) mH t x t us= + - )u du
0
# .

Proof. First note that in the notation of Proposition A.2 we have 
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Using E [Z | t  – x,  0]  =  1 we then get
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 ¡

As an immediate consequence of Proposition A.3 we have the following inver-
sion formula,

 ( (Hs (, ) , ) , )expt x t x t xs=m m sI 2 ,_ i  (47)

which allows us to recover the individual intensities from the population inten-
sity and the level of heterogeneity, s2. The existence of such a formula implies 
that any population mortality surface can be described by a frailty model with 
a given level of heterogeneity.
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APPENDIX B
LIMIT COHORT MORTALITY

The limiting behavior of the cohort mortality profi les of the model specifi ed 
in (15)-(17) is given by the following proposition.

Proposition B.1. Assume s2  >  0. The limit cohort mortality is given by 

 ,x 2
2

(
((

0,

,0
0 ,0 0,

0 .

lim x

if

g b
if and g b

else

>

>
x s

2 3

2 3

3

+ =

+

+
+ = +

"3 s

k
k

2

)
))

g g

g gbm

Z

[

\

]
]

]
]

Proof. First case follows by applying l’Hôpital’s rule to (18), second case is 
the Gamma-Makeham model, and third case is trivial. ¡

The cohort mortality profi le is the result of two opposite effects: the increase 
in individual mortality pushes the cohort mortality upwards, while the selection 
mechanism pushes it downwards. For G-distributed frailties and exponential 
individual intensities the two effects balance each other in such a way that an 
old-age mortality plateau occurs. This is the case in the Gamma-Makeham 
model and in the second case of Proposition B.1.

However, when individual intensities increase faster than exponential the 
individual effect dominates and the cohort mortality converges to infi nity 
(although at a slower pace than the individual intensities). Conversely, for sub-
exponential individual intensities the selection effect dominates and the cohort 
mortality goes to zero. These two situations correspond to the fi rst and third 
case, respectively, of Proposition B.1. The third case of Proposition B.1 is an 
extreme case of sub-exponential growth in which the individual intensities are 
in fact decreasing with age, at least from some age. However, the result holds 
for any sub-exponential intensity, e.g. polynomial.

In the application the estimates of g2 and g3 are both positive. Hence we 
fi nd ourselves in the fi rst case. That individual intensities increase faster than 
exponential was also found by Yashin and Iachine (1997).
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APPENDIX C
RATES OF IMPROVEMENT

The current and asymptotic rates of improvement in age-specifi c death rates 
of the model specifi ed in (15)-(17) is given by the following proposition.

Proposition C.1. Assume k2  <  0. If k2  +  g2  x  <  0 then 

 s x
,

(
t

( 2
E

, )
[ | ]

( ) ) .
log

t x
t

x
x g for t2 2 2" "

2
3

2
= - - + +gr

Z
- kk  (48)

Proof. The equality in (48) follows from (20) and the specifi cation of ms
I. To 

show convergence we fi rst use Proposition A.2 to write 
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,log
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2

2
2
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+ s
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, (49)

where ,x(
x

, ) ( )I t x K y dy
0

-= t# . By (19) and dominated convergence we have 

 g y ,x y(
x

, ( ) ( ) 0 forexpI t x t K dy t
0 2 2 " " 3= + -) ,k_ i#

since k2  +  g2 y  <  0 for all 0  #  y  #  x by assumption. Similarly,
 
 g y ,g y x y( 2

x
, ( ) ( ) ( ) 0 forexp

t
I t x t K dy t

0 2 2 2 " "
2
2 3= + + - ,k) k_ i#

and we conclude that (49) also converges to zero. ¡

The conditions of the proposition imply that all age groups up to age x expe-
rience improvements. Note, however, that g2 may be either positive or negative. 
Thus the model allows for (asymptotic) improvement rates in senescent mor-
tality to be either increasing or decreasing with age.
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APPENDIX D
DATA SUMMARY

TABLE 6

SUMMARY OF DEATHS AND EXPOSURES FOR AGES 20-100 OVER THE PERIOD 1933-2005 FOR

THE COUNTRIES INCLUDED IN THE INTERNATIONAL DATA SET.
SOURCE: THE HUMAN MORTALITY DATABASE (WWW.MORTALITY.ORG).

Country Period
Male

deaths
Male

exposure
Female
deaths

Female 
exposure

Australia 1933-2004 3656554 298774817 3050957 304038560

Austria 1947-2005 2362681 146948386 2544281 172938922

Belgium 1933-2005 3959202 237960436 3655934 254715105

Canada 1933-2005 5818067 501315204 4711059 510104624

Denmark 1933-2005 1736235 118573885 1651576 124503893

England & Wales 1933-2005 18790451 1155893702 18906239 1301265668

Finland 1933-2005 1649803 105805700 1493332 118540078

France 1933-2005 19554792 1197266420 18601741 1332188094

Iceland 1933-2005 50595 4531626 46223 4597037

Italy 1933-2004 17840263 1231244196 16616547 1360392086

Japan 1947-2005 22944373 2115001379 19852118 2274227259

Netherlands 1933-2005 3785909 304422103 3442716 316942482

Norway 1933-2005 1326283 94013584 1240955 98579501

Portugal 1940-2005 2859456 189334582 2769074 216359565

Spain 1933-2005 10815395 785643871 9940870 862709017

Sweden 1933-2005 2969115 202088902 2792398 209883920

Switzerland 1933-2005 1949244 145118601 1888688 159060151

USA 1933-2005 67513137 4756496475 58192508 5127612213

West Germany 1956-2005 16193960 1081937335 17307798 1227848814

REFERENCES

AALEN, O.O. (1988) Heterogeneity in survival analysis. Statistics in Medicine 7, 1121-1137.
ABBRING, J.H. and VAN DER BERG, G.J. (2007) The unobserved heterogeneity distribution in 

duration analysis. Biometrika 94, 87-99.
ANDREEV, K.F. (2002) Evolution of the Danish Population from 1835 to 2000. Monographs on 

Population Aging, 9. Odense University Press.
BARBI, E. (2003) Assessing the rate of ageing of the human population. Working Paper. Max 

Planck Institute for Demographic Research.
BIATAT, V.D. and CURRIE, I.D. (2010) Joint models for classifi cation and comparison of mortality 

in different countries. Proceedings of 25rd International Workshop on Statistical Modelling, 
Glasgow, 89-94.

BONGAARTS, J. (2005) Long-range trends in adult mortality: Models and projection methods. 
Demography 42, 23-49.

BOOTH, H., HYNDMAN, R.J., TICKLE, L. and DE JONG, P. (2006) Lee-Carter mortality forecasting: 
A multi-country comparison of variants and extensions. Demographic Research 15, 289-310.

BOOTH, H., MAINDONALD, J. and SMITH, L. (2002) Applying Lee-Carter under conditions of 
varying mortality decline. Population Studies 56, 325-336.

94838_Astin41-2_04_Jarner.indd   41694838_Astin41-2_04_Jarner.indd   416 2/12/11   08:292/12/11   08:29



 MODELLING ADULT MORTALITY IN SMALL POPULATIONS  417

BROCKWELL, P.J. and DAVIS, R.A. (1991) Time Series: Theory and Methods, Second Edition. Springer-
Verlag, New York.

BROUHNS, N., DENUIT, M. and VERMUNT, J.K. (2002) A Poisson log-bilinear regression approach 
to the construction of projected lifetables. Insurance: Mathematics and Economics 31, 373-393.

BUTT, Z. and HABERMAN, S. (2004) Application of frailty-based mortality models using general-
ized linear models. ASTIN Bulletin 34, 175-197.

CAIRNS, A.J., BLAKE, D. and DOWD, K. (2006) A two-factor model for stochastic mortality with 
parameter uncertainty: Theory and calibration. Journal of Risk and Insurance 73, 687-718.

CAIRNS, A.J., BLAKE, D., DOWD, K., COUGHLAN, G.D., EPSTEIN, D., ONG, A. and BALEVICH, I. 
(2009) A quantitative comparison of stochastic mortality models using data from England & 
Wales and the United States. North American Actuarial Journal 13, 1-35.

CAIRNS, A.J.G. (2000) A discussion of parameter and model uncertainty in insurance. Insurance: 
Mathematics and Economics 27, 313-330.

CAIRNS, A.J.G., BLAKE, D., DOWD, K., COUGHLAN, G.D. and KHALAF-ALLAH, M. (2011) Bayesian 
stochastic mortality modelling for two populations. ASTIN Bulletin 41, 29-59.

CURRIE, I.D., DURBAN, M. and EILERS, P.H.C. (2004) Smoothing and forecasting mortality rates. 
Statistical Modelling 4, 279-298.

DE JONG, P. and TICKLE, L. (2006) Extending Lee-Carter mortality forecasting. Mathematical 
Population Studies 13, 1-18.

DOWD, K., CAIRNS, A.J.G. and BLAKE, D. (2006) Mortality-dependent fi nancial risk measures. 
Insurance: Mathematics and Economics 38, 427-440.

DOWD, K., CAIRNS, A.J.G., BLAKE, D., COUGHLAN, G.D., EPSTEIN, D. and KHALAF-ALLAH, M. 
(2010a) Backtesting stochastic mortality models: An ex-post evaluation of multi-period-ahead 
density forecasts. North American Actuarial Journal 14, 281-298.

DOWD, K., CAIRNS, A.J.G., BLAKE, D., COUGHLAN, G.D., EPSTEIN, D. and KHALAF-ALLAH, M. 
(2010b) Evaluating the goodness of fi t of stochastic mortality models. Insurance: Mathemat-
ics and Economics 47, 255-265.

DOWD, K., CAIRNS, A.J.G., BLAKE, D., COUGHLAN, G.D., EPSTEIN, D. and KHALAF-ALLAH, M. 
(2011) A gravity model of mortality rates for two related populations. North American Actuarial 
Journal 15, 334-356.

EFRON, B. and TIBSHIRANI, R.J. (1993) An Introduction to the Bootstrap. Chapman & Hall, New 
York.

GAVRILOV, L.A. and GAVRILOVA, N.S. (1991) The Biology of Life Span: A Quantitative Approach, 
ed. V.P. Skulachev. Harwood Academic Publishers, Chur.

HOUGAARD, P. (1984) Life table methods for heterogeneous populations: Distributions describing 
the heterogeneity. Biometrika 71, 75-83.

JARNER, S.F., KRYGER, E.M., and DENGSØE, C. (2008) The evolution of death rates and life 
expectancy in Denmark. Scandinavian Actuarial Journal 108, 147-173.

KOISSI, M.-C., SHAPIRO, A.F. and HÖGNÄS, G. (2006) Evaluating and extending the Lee-Carter 
model for mortality forecasting: Bootstrap confi dence intervals. Insurance: Mathematics and 
Economics 38, 1-20.

LEE, R.D. and CARTER, L.R. (1992) Modeling and Forecasting of U.S. Mortality. Journal of the 
American Statistical Association 87, 659-675.

LEE, R.D. and MILLER, T. (2001) Evaluating the performance of the Lee- Carter method for 
forecasting mortality. Demography 38, 537-549.

LI, J. S.-H. and HARDY, M.R. (2009) Measuring basis risk involved in longevity hedges. Working 
paper, University of Waterloo.

LI, J. S.-H., HARDY, M.R. and TAN, K.S. (2009) Uncertainty in mortality forecasting: An exten-
sion to the classic Lee-Carter approach. ASTIN Bulletin 39, 137-164.

LI, N. and LEE, R. (2005) Coherent mortality forecasts for a group of populations: An extension 
of the Lee-Carter method. Demography 42, 575-594.

LI, N., LEE, R. and TULJAPURKAR, S. (2004) Using the Lee-Carter method to forecast mortality 
for populations with limited data. International Statistical Review 72, 19-36.

NUSSELDER, W.J. and MACKENBACH, J.P. (2000) Lack of  improvement of  life expectancy at 
advanced ages in The Netherlands. International Journal of Epidemiology 29, 140-148.

OLIVIERI, A. (2006) Heterogeneity in survival models. applications to pensions and life annuities. 
Belgian Actuarial Journal 6, 23-39.

94838_Astin41-2_04_Jarner.indd   41794838_Astin41-2_04_Jarner.indd   417 2/12/11   08:292/12/11   08:29



418 S.F. JARNER AND E.M. KRYGER

OLIVIERI, A. and PITACCO, E. (2009) Stochastic mortality: the impact on target capital. ASTIN 
Bulletin 39, 541-564.

PITACCO, E., DENUIT, M., HABERMAN, S. and OLIVIERI, A. (2009) Modelling longevity dynamics 
for pensions and annuity business. Oxford University Press, Oxford.

PLAT, R. (2009) Stochastic portfolio specifi c mortality and the quantifi cation of mortality basis 
risk. Insurance: Mathematics and Economics 45, 123-132.

RENSHAW, A.E. and HABERMAN, S. (2003) Lee-Carter mortality forecasting with age-specifi c 
enhancement. Insurance: Mathematics and Economics 33, 255-272.

RENSHAW, A.E. and HABERMAN, S. (2006) A cohort-based extension to the Lee-Carter model 
for mortality reduction factors. Insurance: Mathematics and Economics 38, 556-570.

RICHARDS, S.J., KIRKBY, J.G. and CURRIE, I.D. (2006) The importance of year of birth in two-
dimensional mortality data. British Actuarial Journal 12, 5-38.

THATCHER, A.R. (1999) The Long-Term Pattern of Adult Mortality and the Highest Attained 
Age. Journal of the Royal Statistical Society. Series A 162, 5-43.

TULJAPURKAR, S., LI, N. and BOE, C. (2000) A universal pattern of mortality decline in the G7 
countries. Nature 405, 789-792.

VAUPEL, J.W. (1999) Discussion on “The Long-Term Pattern of Adult Mortality and the High-
est Attained Age” by A.R. Thatcher. Journal of the Royal Statistical Society. Series A 162, 
31-32.

VAUPEL, J.W., MANTON, K.G. and STALLARD, E. (1979) The impact of heterogeneity in individual 
frailty on the dynamics of mortality. Demography 16, 439-454.

WANG, S.S. and BROWN, R.L. (1998) A frailty model for projection of human mortality improve-
ments. Journal of Actuarial Practise 6, 221-241.

WIENKE, A. (2010) Frailty models in survival analysis. Chapman & Hall.
WILLETS, R.C. (2004) The cohort effect: Insights and explanations. British Actuarial Journal 10, 

833-877.
WILMOTH, J.R. (1998) Is the pace of Japanese mortality decline converging toward international 

trends? Population and Development Review 24, 593-600.
WILSON, C. (2001) On the scale of global demographic convergence 1950-2000. Population and 

Development Review 27, 155-171.
YASHIN, A.I. and IACHINE, I.A. (1997) How frailty models can be used for evaluating longevity 

limits: Taking advantage of an interdisciplinary approach. Demography 34, 31-48.

SØREN FIIG JARNER (Corresponding author)
The Danish Labour Market Supplementary Pension Fund,
Kongens Vænge 8,
DK-3400 Hillerød,
Denmark
Phone: +45 4820 3734
E-mail: sj@atp.dk

94838_Astin41-2_04_Jarner.indd   41894838_Astin41-2_04_Jarner.indd   418 2/12/11   08:292/12/11   08:29


