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Abstract

Under the assumption of zero correlation between cost ratios and expected investment
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relative risk aversion investor optimizing expected utility from terminal wealth and identify,
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The indirect effect is due to lost investment opportunities and a less risky stock position
induced by investment costs. By use of an indifferent compensation measure, defined as
the minimum relative increase in the initial wealth the investor demands in compensation
to accept incurring investment costs of a certain size, we quantify the impact of investment
costs. We obtain for realistic parameters that the indirect effect is between half and the
same size as the direct effect, and that the investment decision seems to be of very little
importance compared to the size of the investment costs.
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1 Introduction
Most investors seem primarily to focus on the ability of excellent stock picking, when deciding
which fund should manage their savings. At the same time costs charged by funds seem to differ
by a great deal. The average U.S. equity mutual fund charges around 1.3–1.5 percent, but cost
ratios range from as low as 0.2 (index funds) to as high as 2 percent. In general, costs can vary
substantially across comparable funds, and larger funds and fund complexes charge lower costs
(see e.g. Khorana et al. (2008)). Clearly, the argument for charging high costs is excellent stock
picking. The managers of expensive funds are likely to claim that the additional return they are
expected to generate (compared to any cheaper fund manager) more than compensates for the
extra costs. However, the vast majority of the large literature finds that higher costs are not
related to superior returns (see e.g. Gil-Bazo and Ruiz-Verdú (2009), Carhart (1997), Fama and
French (2010), Malkiel (1995) and Malhotra and Mcleod (1997)).

In particular this is demonstrated by Gil-Bazo and Ruiz-Verdú (2009) who consider a data
set including all open-end U.S. mutual funds that were active in the 1961 to 2005 period. They
consider a series of robustness checks consisting of checking for the impact of funds with extreme
cost ratios and extreme risk-adjusted performance; the impact of small funds; exclusive focusing
on funds for which annual operating costs account for 100 percent of all costs or focusing only
on funds with loads; splitting time into subperiods; splitting mutual funds into categories. In
all cases the conclusion of Gil-Bazo and Ruiz-Verdú (2009) stays the same: The hypothesis of
a unit slope relation between risk-adjusted before-fee performance and cost ratios falls at any
conventional significance level. In fact the expected “additional” before-fee return is, ironically,
estimated by Gil-Bazo and Ruiz-Verdú (2009) to −0.63% per 1% increase of the cost ratio.
In relation Carhart (1997), who using the same data set, concludes that higher costs depress
investment performance while increasing fund companies’ profitability. Also Fama and French
(2010) report that only very few funds produce benchmark-adjusted expected returns sufficient
to cover their costs. One of the reasons that some funds are more expensive is due to the more
actively managed investments. Huang et al. (2013) report, using a sample of 2979 U.S. equity
funds over the period between 1980 and 2009, that the top and bottom decile of funds on av-
erage change their annualized volatility by more than six percentage points. They also find, by
use of a holding-based measure of risk shifting, that funds which alter risk perform worse than
funds that keep stable risk levels over time, suggesting that risk shifting either is an indication
of inferior ability or is motivated by agency issues. Summing up, it seems hard to prove that
good performance is anything but a random phenomena.

Consequently, we analyze the impact of investment costs under the assumption of a zero
correlation between the cost ratio and the expected investment return. However, note that the
analysis also applies to the situation where we assume that funds can indeed generate (some)
excess return, in which case, the cost ratio should be interpreted as the net-cost. The literature,
e.g. the references above, seems only to focus on the loss in rate of return. However, the loss in
rate of return simply induced by paying higher investment costs might not describe the actual loss
suffered by the investor. A more sophisticated approach would be to take into account the risk
aversion of the investor when evaluating the impact of investment costs, thereby also introducing
a change in the investment strategy induced by investment costs. Introducing proportional
investment costs and by use of utility functions, this is the approach taken in our paper. Two
related papers, also taking the investor’s risk aversion into account while considering proportional
costs are Guillén et al. (2014) and Palczewski et al. (2013) (the latter analyzes the impact of
transaction costs).

Guillén et al. (2014) consider a Value at Risk investor (VaR-investor) who invests in a Black-
Scholes market concerned about a given α-percent quantile of the terminal wealth distribution.
By introducing investment costs the investor is forced to invest less in the stock market in order
to maintain the same α-percent quantile. Consequently, the loss in the geometric rate of return
splits into two effects: (a) A direct effect due to the additional expense incurred and (b) an
indirect effect due to a less risky stock position. Some of the capital the investor, prior to
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introducing investment costs, was willing to risk losing is now used to pay investment costs. The
main drawback of the VaR-approach is that no monetary quantification of how much the investor
actually suffers from investment costs seems to be possible. Focusing at the geometric rate of
return seems a bit ad hoc since, in the first place, when deciding upon the investment strategy,
the VaR-investor had no particular preferences for a high median. Using the geometric rate of
return to measure the impact of investment costs also restricts the parameter space since for
very risk seeking investors, introducing investment costs actually increases the geometric rate of
return.

In contrast, Palczewski et al. (2013) use utility functions, but focus instead on the impact
of transaction costs. They optimize expected utility from investing in a market consisting of a
risk free asset and a risky asset modeled by a diffusion model with state-dependent drift. The
effect of costs can again be divided into a direct and an indirect effect. This time the indirect
effect is due to less trading in the asset portfolio. By calculating the indifference price, defined
as the amount of money the investor is willing to pay up front to avoid incurring transaction
costs, they find that in general the loss in utility due to proportional transaction costs is about
twice as large as the direct expenses incurred.

Similar findings are offered by our paper for the case of proportional investment costs. We
focus on a constant relative risk aversion (CRRA) utility optimizer who hands over his sav-
ings to a fund investing in a frictionless Black-Scholes market while being charged proportional
investment costs. In contrast to the VaR-approach of Guillén et al. (2014) the change in invest-
ment strategy and, consequently, the change in geometric rate of return induced by a change
in investment costs becomes independent of the investment horizon. The change in geometric
rate of return is the same for both short and long term investors. As in Guillén et al. (2014)
and Palczewski et al. (2013) we obtain a direct and an indirect effect of costs. In our case,
the indirect effect is the sum of 1) lost investment opportunities, since the amount of money
available for investment is reduced, and 2) the effect from a changed asset allocation induced
by the change in costs. In order to quantify the financial impact of investment costs we cal-
culate the indifferent compensation ratio (ICR), defined as the minimum relative increase in
the initial wealth the investor demands in compensation to accept incurring investment costs
of a certain size. For a CRRA utility optimizing investor the ICR is proved to be equal to the
relative change in certainty equivalents. By comparing the ICR value to the financial value of
accumulated investment costs, we find, similar to Palczewski et al. (2013), that the magnitude
of the indirect effect exceeds the direct effect when considering a long-term investor (40 years
horizon, i.e. investing for retirement). That is, the amount of money needed up front to be
compensated for investment costs can be twice as big as the financial value of accumulated in-
vestment costs, i.e. the amount of money needed to replicate the cost expenses. For a short term
investor we find that the magnitude of the indirect effect is half the size of the direct effect. In
the words of Jens Perch Nielsen, this can be summarized by the catchy phrase: The double blow
of investment costs. Finally, we undertake a study of whether the investment strategy or the
size of investment costs is of most importance. Specifically, we study an investor facing high
investment costs and an optimal investment strategy (w.r.t. his risk aversion profile) and ask
which suboptimal investment strategies the investor is willing to accept if he at the same time
is offered lower investment costs. The conclusion is independent of the time horizon and very
clear: The asset allocation is of very little importance compared to the size of investment costs.

The analysis is performed for a CRRA utility optimizing investor paying proportional in-
vestment costs. We have deliberately chosen CRRA utility and a simple fee model to highlight
the points we wish to make without obscuring the analysis with technicalities. More complex
fee structures can also be analyzed, see e.g. Janeček and Sîrbu (2012), at the expense of more
technicalities and less explicit solutions.

The outline of the paper is as follows: In Section 2 we introduce the investor and the financial
market to be considered, the wealth dynamics, and quantiles for the terminal wealth distribution
together with the geometric rate of return. In Section 3 we analyze for a utility optimizing
investor the change in investment strategy induced by a change in investment costs, and we
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compare the results with the VaR-approach by Guillén et al. (2014). In Section 4, we use the
indifferent compensation measure to quantify the impact of investment costs, and to evaluate
whether the investment strategy or the size of investment costs is of most importance. Finally,
Section 5 summarizes the main conclusions.

2 The financial model
Consider an investor with time horizon T > 0 who has the possibility to invest in a Black-Scholes
market given by a risky stock, S, and a risk-free bank account, B, with dynamics given by

dB(t) = rB(t)dt, B(0) = 1,

dS(t) = µS(t)dt+ σS(t)dW (t), S(0) = s0 > 0.

We assume the risk-free rate, r, the expected return of the stock, µ, and the volatility of the
stock, σ, to be constant with µ > r. The risky part of the stock, W , is a standard Brownian mo-
tion on the probability space (Ω,F ,P) equipped with the filtration FW = (FW (t))t∈[0,T ] given
by the P -augmentation of the filtration σ{W (s); 0 ≤ s ≤ t},∀t ∈ [0, T ]. In principle, a financial
market model should contain more than one stock. However, it is well known from the Mutual
Fund Theorem by Merton (1971) that for a HARA (Hyperbolic Absolute Risk Aversion) utility
investor, as we shall consider, the optimal asset allocation will always be between an optimal
portfolio of the stocks weighted by their Sharp ratios, and the risk-free bank account (at least
for diffusion processes with deterministic coefficients).

Let X denote the wealth process of the investor and π the proportion of the wealth invested
in risky stocks. Consequently, the proportion 1 − π of the wealth is invested in the risk-free
bank account. Assume further that the investor hands over the asset management to a second
party (e.g. a mutual fund or a pension company), and therefore is subject to investment costs.
More precisely, assume that a constant fraction, ν, of the amount of money invested in the stock
market is deducted from the wealth process. The dynamics of the wealth process becomes

dX(t) =

(
(1− π(t))

dB(t)

B(t)
+ π(t)

dS(t)

S(t)
− π(t)ν

)
X(t)

= (r + π(t)(µ− ν − r))X(t)dt+ σπ(t)X(t)dW (t), (1)
X(0) = x0.

Note that costs from investing in the risk-free asset are not explicitly indicated, but are indirectly
present through a possibly lower risk-free rate of return. However, compared to costs emerging
from investing in stocks, costs from investing in the risk-free bank asset are likely to be negligible.
Moreover, we assume through out the paper that the expected excess return is greater than
investment costs, µ − r > ν. Thereby, the net expected return is assumed positive such that
there is an incentive to buy stocks.

2.1 Wealth quantiles for a constant investment strategy
One extremely popular investment strategy is to hold, at all times, a constant fraction of wealth
in stocks. This also turns out to be optimal for the popular CRRA (Constant Relative Risk
Aversion) utility optimizing investor introduced by the pioneering work of Merton (1969). In
this paper we consider only such constant strategies. Note that the word constant is rather
misleading since the amount of money invested in stocks is dynamically reallocated to keep the
fraction of wealth invested in stocks constant. Letting π denote a constant investment strategy,
the wealth dynamics (1) takes the form of a geometric Brownian motion with solution

X(t) = x0 exp

((
r + π(µ− ν − r)− 1

2
π2σ2

)
t+ πσW (t)

)
. (2)
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Since W (t)
D
=

√
tU , where U is standard normal distributed, we get from (2) that the α-quantile,

qα, of the terminal wealth distribution is given by

qα(ν, π) = x0 exp

((
r + π(µ− ν − r)− 1

2
π2σ2

)
T + πσ

√
Tdα

)
, (3)

where dα is the α-quantile of the standard normal distribution. In particular, the median is
given by

q50(ν, π) = x0 exp

((
r + π(µ− ν − r)− 1

2
π2σ2

)
T

)
.

From this we get that the median rate of return (geometric rate of return), from now on referred
to as simply the rate of return, ρ, is given by

ρ(ν, π) = r + π(µ− ν − r)− 1

2
π2σ2. (4)

Note that the rate of return, in contrast to the expected arithmetic rate of return, possesses a
maximum with respect to the risky stock allocation.

3 Investment costs’ impact on the investment strategy
Consider a naive investor who for some reasons invests, without any objective in mind, a constant
fraction, π, of his wealth in risky stocks. For the naive investor the gain/loss in terms of rate of
return caused by a change in the investment costs from ν1 to ν2 is given by

ρ(ν2, π)− ρ(ν1, π) = π(ν1 − ν2), (5)

where ρ is defined by (4). This simple calculation seems to be how investment costs are normally
quantified.

Remark 3.1. As stated in the Introduction, a large part of the literature finds that higher
costs are not related to superior returns. Our analysis and interpretations are based on this
assumption. However, from the point of view of the investor, who thinks that higher costs imply
higher expected returns, the parametrization could be interpreted as ν1 = ν̃1 +(µ− µ̃1), where ν̃1
and µ̃1 are the actual investment costs and the actual (larger) expected return, respectively. In
other words, the cost ratio could be interpreted as the net-cost, and the analysis applies also to
this case.

However, a sophisticated investor should take his risk aversion into account and thereby
adjust his investment strategy accordingly when investment costs change. Our main focus will
be how a utility investor adjusts his investment strategy in response to changes in the investment
costs and how to quantify the associated gain or loss. However, for comparison, we first consider
a VaR-investor as done by Guillén et al. (2014). The main point is that the sophisticated
investor experiences a greater change in the rate of return induced by a change in investment
costs compared to the naive investor.

3.1 Base case parameter values
Throughout this paper we will, as a base case example for illustrating results, use the market
parameters µ = 7%, σ = 20% and r = 3%. When illustrating the impact of investment costs
we consider the difference between paying investment costs at rate ν1 = 1.4% and ν2 = 0.6%,
respectively. Most papers focus on the impact of introducing investment costs. We focus on
an individual who prefers to hand over the asset management to a fund. In that situation it
seems unattainable to obtain zero investment costs. Therefore, we consider instead the “price” of
investing through an expensive fund (ν1) compared to a cheap fund (ν2). The investment costs
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considered are consistent with those observed in the market (see references in Section 1).

Later, for robustness check and to gain further insight, we present results for varying values
of the market parameters, the risk aversion and horizon of the investor, and the cost ratios.

3.2 The Value at Risk approach
This subsection briefly presents and explains the impact of investment costs for a VaR-investor,
as presented in Guillén et al. (2014). A VaR(α)-investor is an investor being concerned with
the value of the α-quantile of the terminal wealth distribution, i.e. with the level for which the
realized terminal wealth risk to fall below with a probability of α-percent. Denote the lower level
of wealth by X̂(T ). To be more precise, the VaR(α)-investor facing investment costs ν1 chooses
his investment strategy, π̂1, such that

qα(ν1, π̂1) = X̂(T ),

where qα is given by (3). The point is that if investment costs change from ν1 to ν2 this relation
holds no more. Obviously, the VaR-(α)-investor should adjust his investment strategy such that
the VaR-criteria is still fulfilled. We therefore look for a change in the investment strategy, ∆,
fulfilling the relation

qα(ν2, π̂1 +∆) = qα(ν1, π̂1), (6)

i.e. being faced with investment costs ν2 the investor should instead invest π̂2 = π̂1 + ∆ of his
wealth in risky stocks. We get the solution

∆ =
−b±

√
D

2a
,

where D = b2 − 4ac and

a =
σ

2
,

b = −(µ− ν2 − r) + π̂1σ
2 − σdα√

T
,

c = π̂1(ν2 − ν1).

Of the two solutions we focus on the one allowing for more stocks in the case of lower costs (ν2 <
ν1) and fewer stocks in the case of higher costs (ν2 > ν1). Guillén et al. (2014) derive restrictions
on the parameter space ensuring that the median increases and the α-quantile decreases when
exposure in the risky asset increases. In contrast to (5) the change in rate of return becomes

ρ(ν2, π̂2)− ρ(ν1, π̂1) = π̂1(ν1 − ν2) + ∆(µ− ν2 − r)− 1

2
∆2σ2 − π̂1∆σ2. (7)

Note that since ∆ and π̂1 depend on the investment horizon so does the change in rate of re-
turn. Figure 1 illustrates for the base case example (see Subsection 3.1) the VaR-calibration
concept for an investor investing one unit initially. First, when investment costs are ν1 = 1.4%
the VaR(10%)-investor chooses to invest π̂1 = 60% of his wealth in stocks corresponding to a
10-percent quantile for the terminal wealth distribution of q10%(ν1, 60%) = 1.75 and a median of
q50%(ν1, 60%) = 4.65. Not changing the investment strategy, but now being charged ν2 = 0.6%
in investment costs, the 10-percent quantile becomes q10%(ν2, 60%) = 2.12 and the median in-
creases, due to paying less costs, to q50%(ν2, 60%) = 5.63. However, the investor is able to
increase the fraction of wealth invested in stocks to π̂2 = 74.4% thereby obtaining the original
10-percent target quantile q10%(ν2, 74.4%) = q10%(ν1, 60%) = 1.75 and at the same time an even
bigger median of size q50%(ν2, 74.4%) = 5.87. In other words, Figure 1 illustrates a direct and
an indirect effect of investment costs.
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Figure 1: Illustration of the VaR-calibration: Terminal wealth distribution for an investor with
time horizon T = 40 years investing π̂1 = 60% (solid curve), π2 = 60% (dotted curve) or
π̂2 = 74.4% (dashed curve) of his wealth in stocks while being charged ν1 = 1.4%, ν2 = 0.6%
or ν2 = 0.6% in investment costs, respectively. The 10-percent quantiles and the medians are
indicated by vertical lines. Initial wealth is one monetary unit.

Guillén et al. (2014) focus on the loss in rate of return incurred by the VaR-investor from in-
troducing investment costs. For some parameters, going from no costs to costs actually charged
by funds around the world, they conclude that the loss in rate of return calculated by (7) is
double the size of the naive loss calculated by (5), i.e. an indirect effect equal to the direct effect.
However, going from low investment costs (say) 0.6 percent to higher costs at (say) 1.4 percent,
both within the interval of normal costs charged by real life funds, we get a much more modest
additional loss in the rate of return; the loss is about 1/5 higher than the loss from the naive
calculation. To be concrete, for the case illustrated in Figure 1, we obtain a direct loss in the
rate of return of 0.48 percent, and an indirect loss of 0.10 percent.

One question the VaR-approach is not capable of answering is how to evaluate the impact of
investment cost taking the entire distribution of terminal wealth into account. E.g. how much is
it “worth” being charged ν2 percent instead of ν1 percent? This is the reason we take on another
approach and consider a utility optimizing investor instead.

6



3.3 The utility approach
Consider an investor measuring his attitude towards risk by a constant relative risk aversion
(CRRA) function defined by

u(x) =


x1−γ

1−γ , if x > 0,

limx↘0
x1−γ

1−γ , if x = 0,

−∞, if x < 0,

(8)

for some γ ∈ (0,∞)\{1} (γ = 1 corresponds to the logarithmic case). A commonly used object
for the investor is to try maximizing the expected utility from terminal wealth. Formally, the
investor looks for the investment strategy π∗ fulfilling

sup
π

E [u(Xπ(T ))] = E
[
u
(
Xπ∗

(T )
)]

, (9)

where we have indicated the π-dependence of the terminal wealth in the notation. The problem
given by (9) is one of the most well-known optimization problems from the literature of financial
stochastic control and is often referred to as Merton’s problem after the pioneering work of Merton
(1969). The solution to the problem can be obtained by use of dynamic programming, which
turns the stochastic optimization problem into a deterministic optimization problem and a set of
partial differential equations (Hamilton-Jacobi-Bellman equations), or by use of the more direct
method called the “Martingale method” developed by Karatzas et al. (1987) and Cox and Huang
(1989), which turns the problem into a static optimization problem and a representation problem.
For a nice introduction to financial stochastic control and to see several approaches to solving
Merton’s problem (9) see Rogers (2013). The solution turns out to depend on the investor’s risk
aversion, the riskiness of stocks (volatility) and the stock risk premium net investment costs,
and is given by

π∗(ν) =
1

γ

µ− ν − r

σ2
. (10)

We see that the optimal investment strategy is to hold a constant fraction of wealth in risky
assets. This is a feature of CRRA utility which, from a mathematical point of view, is rather
appealing (see Subsection 2.1). The strategy itself dictates directly the change in the risky
position induced by a change in investment costs. We get

∆ = π∗(ν2)− π∗(ν1) =
1

γ

ν1 − ν2
σ2

.

As for the VaR-approach we see that, naturally, if the investment costs decrease (increase) more
stocks should be bought (sold). However, opposed to the VaR-approach the change in the risky
position is always unique (no short-selling solution). Even more appealing we get in contrast
to the VaR-approach (see (7)) that the change in rate of return becomes independent of the
investment horizon. We get, with π∗

i = π∗(νi), that

ρ(ν2, π
∗
2)− ρ(ν1, π

∗
1) = π∗

1(ν1 − ν2) + ∆(µ− ν2 − r)− 1

2
∆2σ2 − π∗

1∆σ2.

Clearly, the rather large change in rate of return induced by a change in investment costs, was
for the VaR-investor partly because a very long investment horizon was considered. Since many
private investors mainly invest through being a member of a pension scheme, i.e. long time
horizon, the conclusion still seems to be highly relevant. However, the fact that for the utility
investor the change in rate of return induced by a change in investment costs does not depend on
the investment horizon counters criticism claiming that the effect is negligible for short horizons.
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Figure 2 illustrates for the base case example (see Subsection 3.1) the utility-calibration
concept for an investor with risk aversion corresponding to γ = 1.0833, who invests one unit
initially. First, when investment costs are ν1 = 1.4% the investor optimally invests π∗

1 = 60%
of his wealth in stocks. When investment costs decline to ν2 = 0.6% the investor increases this
fraction to π∗

2 = 78.5%. In contrast to the VaR-approach we see in Figure 2 that the 10-percent
quantiles of the terminal wealth distributions are not equal for the two cases. The utility investor
does not focus solely on the 10-percent quantile, but evaluates the entire distribution of terminal
wealth when he decides how much of the saved investment costs to invest in stocks. In this
respect he acts more sophisticated than the VaR-investor.
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Figure 2: Illustration of the utility-calibration: Terminal wealth distribution for an investor with
time horizon T = 40 years investing π∗

1 = 60% (solid curve) or π∗
2 = 78.5% (dashed curve) of his

wealth in stocks while being charged ν1 = 1.4% or ν2 = 0.6% in investment costs, respectively.
The 10-percent quantiles and the medians are indicated by vertical lines. Initial wealth is one
monetary unit.

3.4 Comparing the VaR and utility approach
In Subsections 3.2 and 3.3 we considered a VaR-investor and a utility optimizing investor, respec-
tively. The VaR-investor picked his investment strategy in order to obtain a target 10-percent
quantile for the terminal wealth distribution equal to 1.75. The utility investor picked his in-
vestment strategy in order to maximize expected utility from terminal wealth while using the
power utility function given by (8) with risk aversion given by γ = 1.0833. In order to be able
to compare the two investors’ reaction to changes in investment costs we have constructed the
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two examples such that when investment costs are ν1 = 1.4% both investors prefer to invest
π = 60% of the wealth in stocks.

Changing investment costs from ν1 = 1.4% to ν2 = 0.6% we saw in Subsections 3.2 and 3.3
that the change in the investment strategy was ∆ = 14.4% for the VaR-investor and ∆ = 18.5%
for the utility investor. From this example we conclude that the utility investor reacts more
strongly compared to the VaR-investor when investment costs change. However, as illustrated
by Figure 3, this is not a general rule of thumb. In fact, by changing the risk profiles such
that both investors prefer a π = 30% position of wealth in stocks when investment costs are
ν1 = 1.4%, lowering the investment costs now makes the VaR-investor change his investment
strategy more than the utility optimizing investor.
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Figure 3: Illustrations of how the utility optimizing investor (solid curves) and the VaR-investor
(dashed curves) change investment strategy when investment costs decrease from ν1 = 1.4% to
ν2 ∈ [0, ν1]. The left plot illustrates the case where the investors prefer a π = 60% allocation to
stocks, and the right plot the case of a preferable π = 30% allocation to stocks, when investment
costs are ν1 = 1.4%. The dots indicate the base case example where investment costs decrease
to ν2 = 0.6%. The investment horizon is T = 40 years.

Basak and Shapiro (2001) finds the optimal investment strategy for a power utility investor
faced with a VaR restriction on terminal wealth. More precisely, they optimize expected utility
from terminal wealth under the constraint that terminal wealth is allowed to fall below a certain
lower bound with probability at most α. It is shown that the optimal strategy consists of
an optimal unrestricted portfolio and an insurance covering only intermediate losses in that
portfolio, i.e. the worst losses in the terminal wealth distribution are accepted. The investor
considered by Basak and Shapiro (2001) is motivated by the widespread use of VaR-based risk
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management among institutional investors, either voluntarily or enforced by regulation. This
investor is in a sense a combination of the two investors we consider; in response to changed
investment costs the investor of Basak and Shapiro (2001) would change investment strategy
to optimize utility and adhere to a VaR-constraint, while the investors we consider would focus
on one of these measures only. The results of Basak and Shapiro (2001) offer an alternative
calibration of the investment strategy and thereby an alternative way to quantify the effect of
investment costs. However, our aim is to quantity the effect of investment costs for private
investors for which a combined utility and VaR-approach does not appear natural. Furthermore,
we prefer the simpler model of Subsection 3.3 in order to obtain closed-form results and clear
interpretations when examining the impact of investment costs.

4 Quantification of the impact of investment costs
In this section we use the utility approach described in Subsection 3.3 to quantify the impact of
investment costs. Inserting the optimal investment strategy (10) into (2) we are able to calculate
the optimal expected utility given by (9). We get

sup
π

E
[
u
(
X(ν,π)(T )

)]
= E

[
u
(
X(ν,π∗)(T )

)]
=

1

1− γ
x1−γ
0 exp

((
r + π∗(µ− r − ν)− 1

2
(π∗)

2
σ2

)
T (1− γ) +

1

2
(π∗)

2
σ2(1− γ)2T

)
=

1

1− γ
x1−γ
0 exp

{(
r +

1

2

1− γ

γ

(
µ− r − ν

σ

)2
)
T

}
, (11)

where x0 denotes the initial wealth. Now, define the Indifferent Compensation Ratio as the
minimum relative increase in the initial wealth the investor demands in compensation to accept
incurring higher investment costs. Formally, the indifferent compensation ratio for two given
levels of investment costs, ICR(ν1,ν2), is given by the relation

sup
π

E
[
u
(
X(ν2,π)(T )

) ∣∣∣X(ν2,π)(0) = x0

]
= sup

π
E
[
u
(
X(ν1,π)(T )

) ∣∣∣X(ν1,π)(0) = x0

(
1 + ICR(ν1,ν2)

)]
. (12)

The certainty equivalent is the smallest amount of money the investor is willing to receive
with certainty at the horizon in exchange for the possibility to invest in the stock market. In
formula, the certainty equivalent for a given level of investment costs, CEQ(ν), is defined by the
relation

u
(
CEQ(ν)

)
= sup

π
E
[
u
(
X(ν,π)(T )

)]
.

Since by (2) the wealth process is linear in initial wealth we obtain

u
(
CEQ(ν2)

)
= u

((
1 + ICR(ν1,ν2)

)
CEQ(ν1)

)
.

From this we conclude that for power utility the two measures are equivalent in the sense that

CEQ(ν2) − CEQ(ν1)

CEQ(ν1)
=

(
1 + ICR(ν1,ν2)

)
CEQ(ν1) − CEQ(ν1)

CEQ(ν1)
= ICR(ν1,ν2), (13)

i.e. the relative change in certainty equivalents equals the indifferent compensation ratio. This
is another appealing feature of power utility. The indifferent compensation ratio given by (12)
can easily be calculated by (13) and (11). We get

ICR(ν1,ν2) = exp

{
1

2

T

γ

ν22 − ν21 + 2(µ− r)(ν1 − ν2)

σ2

}
− 1. (14)
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Note that ICR is increasing in excess return, µ − r, and decreasing in volatility, σ. Thus the
more attractive stocks are (higher return / lower volatility) the higher should the compensation
be. This is perhaps somewhat surprising as one might intuitively think that the impact of high
investment costs would be smaller if the expected return were higher, and consequently that one
would be willing to accept a smaller compensation to move from a low level of costs to a higher
level of costs. In fact, the conclusion is just the opposite! This is due to the fact that for the
investor we are considering a change in asset characteristics also changes the optimal allocation.
Hence we are comparing the effect of costs on different allocations which hampers intuition.

Since, by assumption the investment costs are positive and smaller than the excess return
offered by stocks, 0 ≤ ν1, ν2 ≤ µ− r, it follows from (11) that ICR is positive if and only if ν2
is smaller than ν1. Hence, one should be compensated to be willing to accept higher costs. In
this respect the ICR measure conforms with intuition.

We are now in a position to quantify the impact of investment costs using the indifferent
compensation measure given by (12). Consider the base case example of Subsection 3.1 with
one unit initially invested and investment costs ν1 = 1.4% and ν2 = 0.6%, respectively. We get

ICR(ν1,ν2) =
CEQ(ν2) − CEQ(ν1)

CEQ(ν1)
=

5.66− 4.54

4.54
= 0.248, (15)

i.e. the investor profits a gain equal to 24.8 percent of the initial wealth when investment costs
decrease from ν1 to ν2. Tables 1–3 show the impact of investment costs in terms of ICR for
varying parameter values. The range of risk aversions used in Table 2 corresponds to an optimal
equity allocation of, respectively, 20%, 40%, 60%, 80% and 100% in the base case example with
investment costs of ν1 = 1.4%.

As illustrated in Table 1 the compensation varies greatly with the underlying market charac-
teristics. In the most extreme case (σ = 14%, µ = 11%) the investor demands a compensation of
almost two dollars for each dollar invested to be willing to accept higher costs. In this case stocks
are very attractive and the optimal allocations are highly leveraged (π∗

1 = 311%, π∗
2 = 349%),

which amplifies the effect of the cost difference. For more realistic levels of capital market
parameters the required compensation is still substantial, but more in line with the base case
example.

Investors with different risk aversions require different compensation. Comparing the columns
of Table 2 we see that the required compensation is approximately linear in the corresponding
stock allocation; the allocation to stocks is five times higher in the rightmost column compared
to the leftmost column. We also see from Table 2 that the compensation is approximately linear
in the time horizon.

Finally, Table 3 illustrates the effect of different levels of cost. Note that in the upper
right corner of the table the “low” costs are in fact higher than the “high” costs, and hence the
compensation is negative. We see that the effect of a given difference in costs is highest when
the absolute level is low. For example, the investor under consideration requires a compensation
of 30.5% to accept costs of 0.8% rather than no costs, while he requires a compensation of “only”
19.4% to accept costs of 2.0% rather than costs of 1.2%.

4.1 Financial value of investment costs
In Subsection 3.2 we considered the change in rate of return induced by a change in investment
costs and compared the naive change given by (5) with the change the VaR-investor experienced
given by (7). For the utility optimizing investor it seems natural to compare the indifferent
compensation ratio with the financial value of expected accumulated investment costs over the
horizon. The financial value of investment costs over the horizon is defined as

F (ν, π) ≡ EQ

[∫ T

0

e−rtX(t)πνdt

]
,
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Volatility Expected stock return (µ)

(σ) 4.5% 5% 7% 9% 11%

14% 7.8% 16.3% 57.2% 112.4% 187.2%

17% 5.2% 10.8% 35.9% 66.7% 104.5%

20% 3.8% 7.7% 24.8% 44.7% 67.7%

23% 2.8% 5.7% 18.2% 32.2% 47.8%

26% 2.2% 4.5% 14.0% 24.4% 35.8%

Table 1: Indifferent compensation ratio (ICR) for varying capital market parameter values.
Other parameters are kept at their base case values, i.e. r = 3%, T = 40, γ = 1.833, ν1 = 1.4%
and ν2 = 0.6%.

Horizon Risk aversion (γ)

(T ) 3.25 1.625 1.0833 0.8125 0.65

1 0.2% 0.4% 0.6% 0.7% 0.9%

5 0.9% 1.9% 2.8% 3.8% 4.7%

10 1.9% 3.8% 5.7% 7.7% 9.7%

20 3.8% 7.7% 11.7% 15.9% 20.3%

40 7.7% 15.9% 24.8% 34.4% 44.7%

Table 2: Indifferent compensation ratio (ICR) for varying horizon and risk aversion. Other
parameters are kept at their base case values, i.e. r = 3%, µ = 7%, σ = 20%, ν1 = 1.4% and
ν2 = 0.6%.

where EQ denotes expectation with respect to the so-called risk-neutral, or pricing, measure Q.
Using that the expected return of stocks equals r under Q, we get from (2)

EQ [X(t)] = x0 exp((r − πν)t),

and thereby

F (ν, π) = x0 (1− exp(−πνT )) . (16)

This quantity represents the amount of money that an investor (with no investment costs) would
need in order to replicate the cost cash flow charged by the fund. From the point of view of the
fund manager this is the value of investment costs paid by the customer.

Next, we define the Relative Change in Financial value of accumulated investment costs
induced by lowering investment costs from ν1 to ν2, RCF(ν1,ν2), by

RCF(ν1,ν2) ≡
F (ν1, π

∗
1)− F (ν2, π

∗
2)

x0
= exp(−π∗

2ν2T )− exp(−π∗
1ν1T ). (17)

Note that, as is the case for the indifferent compensation ratio, this value is independent of the
size of the initial wealth. We interpret (17) as the direct effect and the difference between (13)
and (17) as the indirect effect of investment costs.

In principle, if the customer received RCF (per unit invested) he could replicate the additional
costs charged by the expensive fund, and it could be argued that he should then be indifferent to
joining the cheap and the expensive fund. This argument, however, underestimates the actual
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High cost Low cost (ν2)

(ν1) 0% 0.3% 0.6% 0.9% 1.2%

0.8% 30.5% 17.3% 6.3% -2.9% -10.5%

1.1% 42.0% 27.6% 15.6% 5.7% -2.6%

1.4% 53.2% 37.7% 24.8% 14.1% 5.1%

1.7% 63.9% 47.4% 33.6% 22.1% 12.5%

2.0% 74.0% 56.4% 41.8% 29.6% 19.4%

Table 3: Indifferent compensation ratio (ICR) for varying investment costs. Other parameters
are kept at their base case values, i.e. r = 3%, µ = 7%, σ = 20%, T = 40 and γ = 1.833.

impact of increased investment costs. First, the additional costs must be replicated within the
fund and hence costs must be paid on the amount set aside to cover costs! In more conventional
terms, the higher costs cause lost investment opportunities since the amount of money available
for investment is reduced. Second, if the investor was reimbursed for the additional costs he
would optimally change his investment strategy. Thus, even if the additional costs could be
replicated for free he would need compensation to accept a suboptimal investment strategy in
the expensive fund. The indirect effect is the sum of these two effects.

For the base case example (ν1, ν2) = (1.4%, 0.6%) with corresponding optimal investment
strategies (π∗

1 , π
∗
2) = (60%, 78.4%) we get a direct effect of

RCF(ν1,ν2) = 0.828− 0.715 = 0.114,

i.e. the financial value of investment costs equals 11.4% of the initial wealth. In contrast, we
got in (15) that the investor demands an increase of 24.8% of initial wealth in compensation to
accept incurring the higher investment costs ν1 = 1.4% instead of the lower ν2 = 0.6%. The
great gap between these two values (the indirect effect) is due to lost investment opportunities
and a suboptimal strategy.

In contrast to the ICR measure, RCF is not necessarily positive when the cost ratio is
lowered. When the cost ratio is lowered the allocation to stocks is increased, and in some cases
this increase is so large that the value of costs (F ) also increase. Assuming ν2 ≤ ν1 it is not hard
to show that RCF(ν1,ν2) < 0 when µ − r < ν1 + ν2, RCF(ν1,ν2) = 0 when µ − r = ν1 + ν2, and
RCF(ν1,ν2) > 0 when µ− r > ν1 + ν2. These relations can be observed in Table 4.

It is intuitively clear that the value of costs is not monotone in the cost ratio. When ν = 0
the value is zero because no costs are charged, and if ν = µ − r the value is also zero because
the allocation to stocks is zero (π∗ = 0). It is easy to show that the value of costs is maximized
for ν = (µ − r)/2, i.e. when costs constitute half the risk premium on stocks. In the base case
example this corresponds to costs of 1.5%; slightly above the rate charged by our expensive fund.

Comparing Tables 1–3 with Tables 4–6 we see that the compensation required by the investor
to accept higher costs (ICR) is substantially larger than the change in financial value of costs
(RCF). Typically the indirect effect (the difference) is of the same magnitude as the direct effect
as measured by RCF.

In some cases we even have that RCF is negative (leftmost column of Table 4) while ICR
is positive (leftmost column of Table 1). In this situation both the investor and the fund man-
ager would demand a compensation to “accept” higher costs! From the point of view of the
investor, the “benefit” of higher cost ratios in terms of lower financial value is outweighed by the
suboptimality of the resulting strategy.

The left plot in Figure 4 compares the indifferent compensation ratio (13) with (17) for dif-
ferent investment costs. In other words, we compare the size of the compensation sum with
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Volatility Expected stock return (µ)

(σ) 4.5% 5% 7% 9% 11%

14% -7.1% 0.0% 17.7% 24.6% 25.8%

17% -4.9% 0.0% 14.2% 22.2% 26.0%

20% -3.6% 0.0% 11.4% 19.0% 23.8%

23% -2.7% 0.0% 9.2% 16.0% 20.9%

26% -2.1% 0.0% 7.5% 13.4% 18.1%

Table 4: RCF for varying capital market parameter values. Other parameters are kept at their
base case values, i.e. r = 3%, T = 40, γ = 1.833, ν1 = 1.4% and ν2 = 0.6%.

Horizon Risk aversion (γ)

(T ) 3.25 1.625 1.0833 0.8125 0.65

1 0.1% 0.2% 0.4% 0.5% 0.6%

5 0.6% 1.2% 1.8% 2.4% 2.9%

10 1.2% 2.4% 3.5% 4.5% 5.5%

20 2.4% 4.5% 6.5% 8.3% 9.9%

40 4.5% 8.3% 11.4% 13.9% 15.9%

Table 5: RCF for varying horizon and risk aversion. Other parameters are kept at their base
case values, i.e. r = 3%, µ = 7%, σ = 20%, ν1 = 1.4% and ν2 = 0.6%.

the relative change in the financial value of accumulated costs over the horizon, relative to the
size of the initial wealth. The fact that for reasonable values of investment costs the effect of
higher costs seems to (more than) double is quite surprising. As mentioned, one could refer to
the phenomenon as The double blow of investment costs. Clearly, one wonders how much this
double effect is due to the long horizon (T = 40) considered by the base case example. The right
plot in Figure 4 illustrates that the effect is substantial even for a short term investor. In fact,
for a short time investor the indirect effect is half the size of the direct effect.

4.2 The importance of investment costs versus investment strategy
Finally we analyze the relative importance of the investment strategy and investment costs.
Specifically, we consider a power utility optimizing investor who hands over his savings to a
fund charging him high investment costs at a rate ν1. In return, the fund offers a tailored
investment strategy π∗

1 fitted to meet the risk preferences of the client, i.e. the object given by
(9) is optimized. The investor now becomes aware that another fund offers to manage his savings
while only charging him investment costs at a lower rate ν2. However, in order to offer this cheap
product, the fund is organized as an investment collective meaning that all members follow the
same investment strategy π2. Obviously, if the common investment strategy π2 exercised by the
cheap fund happens to equal the tailored optimal investment strategy π∗

2 it’s a no-brainer —
the investor should move to the cheap fund. However, how much can the collective investment
strategy π2 offered by the cheap fund differ from the optimal tailored investment strategy π∗

2 for
the investor still to prefer the cheap fund over the expensive fund? In formula, we look for the
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High cost Low cost (ν2)

(ν1) 0% 0.3% 0.6% 0.9% 1.2%

0.8% 21.0% 11.3% 3.9% -1.7% -5.6%

1.1% 25.5% 15.8% 8.3% 2.8% -1.2%

1.4% 28.5% 18.8% 11.4% 5.8% 1.9%

1.7% 30.3% 20.6% 13.1% 7.6% 3.6%

2.0% 30.9% 21.1% 13.7% 8.2% 4.2%

Table 6: RCF for varying investment costs. Other parameters are kept at their base case values,
i.e. r = 3%, µ = 7%, σ = 20%, T = 40 and γ = 1.833.
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Figure 4: Illustrations of the indifferent compensation ratio (ICR) and the relative change in
the financial value of accumulated investment costs (RCF). The left plot illustrates for a fixed
horizon T = 40 the values when investment costs decreases from ν1 = 1.4% to ν2 ∈ [0, ν1] (ICR
solid curve, RCF dashed curve). The dots indicate the base case example where investment
costs decrease to ν2 = 0.6%. The right plot illustrates for a decrease in investment costs from
ν1 = 1.4% to ν2 = 0.6% the proportion between the two measures (ICR/RCF) for varying time
horizons.

investment strategies π2 satisfying the relation

u
(
CEQ(ν1)

)
= E

[
u
(
X(ν2,π2)(T )

)]
.
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By use of (11) we get the solution

π2 =
−b±

√
D

2a
, (18)

where D = b2 − 4ac and

a =
σ

2
(1− γ)γ,

b = −(µ− ν2 − r),

c =
1

2

1− γ

γ

(
µ− v1 − r

σ2

)2

.

Note that the solution does not depend on the investment horizon.
The rightmost curve in Figure 5 illustrates, for the parameters (ν1, π

∗
1) = (1.4%, 60%) and

ν2 ∈ [0, ν1], the cost-dependent value of π2 for which the investor is indifferent between the two
funds. From left to right the next 5 curves illustrates cost-dependent values of π2 for which
the investor is 10, 20, 30, 40 and 50 percent better off being a member of the cheap fund. The
line illustrates the cost-dependent optimal risk allocation π∗

2 . The conclusion is surprisingly
clear. If the investor is offered the lower cost rate ν2 = 0.6% instead of the higher cost rate
ν1 = 1.4%, he is better off almost no matter how much the investment strategy differs from
his risk preferences. Any investment strategy π2 ∈ (0.28, 1.29) makes the cheap fund preferable
(remember π∗

2 = 78.5% is optimal). As seen in Figure 5 this interval shrinks when considering
scenarios where the investor is 10, 20, 30, 40 and 50 percent better off. Still, the range of
investment strategies is surprisingly wide. Once again, the conclusion, which is independent
of the investment horizon, is very clear: The investor should be much more concerned with
investment costs compared to being concerned with which investment strategy exactly meets his
risk preferences.

5 Conclusion
The purpose of the paper is to quantify the total loss incurred by an investor faced with invest-
ment costs. For a CRRA utility optimizing investor faced with proportional investment costs
and operating in a Black-Scholes market we find that in addition to the direct loss due to the
costs themselves the investor incurs an indirect loss of similar magnitude. The indirect loss is due
to lost investment opportunities and a more conservative allocation in response to (increased)
costs. Thus, in a sense, the investor effectively pays costs twice. The conclusion is in line with
existing results, cited in the paper, for investors with other preferences and faced with other cost
structures. We are thus led to believe that this is a general result.

In contrast to existing research we quantify the impact of costs by the indifferent compen-
sation ratio (ICR). The ratio measures the additional amount of money (per unit invested) the
investor would need in compensation to be indifferent to staying in a cheap fund and moving to
a more expensive fund. We derive an explicit expression for ICR, equation (14), from which a
number of illuminating insights can be gained. Risk seeking investors (γ close to 0) demands a
higher compensation than risk averse investors, and stocks with higher expected return entails
higher compensation than stocks with lower expected return all else being equal.

We also analyze how much an investor is willing to deviate from his optimal allocation when
offered lower costs; we find that he is willing to accept a very wide range of allocations indeed
in exchange for lower costs. In other words, the impact of costs is far greater than the impact
of the investment decision.

The analysis is carried out under the assumption that the risk aversion of the investor can be
described by the power utility function (8), with known parameter γ. Perhaps, most investors
do not think of their preferences towards risk in these terms. Rather, most investors have a
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Figure 5: The curves illustrate for given investment costs ν2 ∈ [0, ν1] the investment strategies π2

which makes the investor (from right to left) 0, 10, 20, 30, 40 and 50 percent better off compared
to being charged ν1 = 1.4% while using the optimal investment strategy π∗

1 = 60%. The line
illustrates the cost-dependent optimal stock allocation.

preference for a certain stock allocation in a given market. Given a certain preferred stock allo-
cation, the risk aversion parameter γ can be inferred, and we can analyze how the investor should
rationally act under changed market assumptions, and particularly under changed investment
costs.

We assume throughout that the investor has knowledge of the true market parameters, i.e.
the rate of return and volatility. However, in real-life the investor would need to estimate these
quantities from market data, and consequently he would in general be pursuing a suboptimal
strategy. It can be argued that this uncertainty should be included in the analysis. On the other
hand, since the impact of costs is so much bigger than the impact of the investment decision
we believe that the conclusions would be essentially the same even if investors were generally
following suboptimal strategies.

The analysis of the paper is carried out under the assumption that the pre-cost expected stock
return is the same for all funds. There is overwhelming academic evidence for this assumption
(see references quoted in the Introduction), but it is of course still debatable. However, the
analysis also applies to the situation where we assume that funds can indeed generate (some)
excess return. The only modification is that the cost should then be interpreted as the net-cost,
i.e. the cost in excess of the assumed excess return. The main conclusion still stands; the indirect
effect of costs is of the same magnitude as the costs themselves.
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