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Abstra
t

The purpose of the paper is twofold. First, we 
onsider entran
e times of random walks,

i.e. the time of �rst entry to the negative axis. Partition sum formulas are given for entran
e

time probabilities, the n
th

derivative of the generating fun
tion, and the n
th

falling fa
torial

entran
e time moment. Similar formulas for the 
hara
teristi
 fun
tion of the position of the

random walk both 
onditioned on entry and 
onditioned on no entry are also established.

Se
ond, we 
onsider a model for a with-pro�ts 
olle
tive pension fund. The model has

previously been studied by approximate methods, but we give here an essentially 
omplete

theoreti
al des
ription of the model based on the entran
e time results. We also 
ondu
t

a mean-varian
e analysis for a fund in stationarity. To fa
ilitate the analysis we devise a

simple and e�e
tive exa
t simulation algorithm for sampling from the stationary distribution

of a regenerative Markov 
hain.
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1 Introdu
tion

This paper analyzes a �with-pro�ts 
olle
tive pension s
heme�; this type of s
heme and variants

hereof are widespread, among other pla
es, in the Nordi
 
ountries and the Netherlands. Mem-

bers of the s
heme are guaranteed a minimum bene�t. The guarantees are a liability for the

pension fund for whi
h it must reserve an amount of money equal to the net present value of

future guaranteed bene�ts (the reserve). In addition to the already guaranteed bene�ts members

may re
eive bonuses in the form of in
reased guarantees. Bonuses are attributed periodi
ally,

e.g. annually, when the ratio of total assets to the reserve (the funding ratio) is su�
iently high.

The phrase �with-pro�ts� refers to this pro�t-sharing me
hanism.

Assets in ex
ess of the reserve are termed the bonus potential. The bonus potential allows the

fund to invest in risky assets by absorbing adverse investment results. The s
heme is �
olle
tive�

in the sense that the bonus potential is 
onsidered 
ommon to all members. It is also 
olle
tive in

the sense that the investment strategy and bonus poli
y is the same for all members. Colle
tive

funds generally bene�t from e
onomy of s
ale in the form of low administration and investment


osts. The �ip side is the la
k of an individual investment strategy.

We 
onsider a model for a 
olle
tive pension fund in whi
h a bonus is attributed when the

funding ratio ex
eeds a given bonus threshold. The fund follows a CPPI (Constant Proportion

Portfolio Insuran
e) investment strategy in order to stay solvent, i.e. to ensure that total assets

ex
eed the reserve. The paper gives an essentially 
omplete des
ription of the fund dynami
s

in
luding the time between bonuses, the (
onditional) expe
ted bonus per
entage and the (
on-

ditional) expe
ted funding ratio. The analysis is based on a detailed study of an embedded

one-sided random walk obtained by a transformation of the funding ratio pro
ess sampled at the

dis
rete set of time points where a bonus 
an be attributed. We 
onsider both a fund starting

at the bonus threshold and a fund in stationarity. Furthermore, we use the results to perform a

mean-varian
e analysis of a standardized bene�t payout. The analysis is performed for a fund

in stationarity representing the �average� member. To fa
ilitate the analysis we also employ an

exa
t simulation algorithm, whi
h might be of independent interest.

The theoreti
al foundation for the analysis is a series of new results for entran
e times of

random walks derived in this paper. For a random walk started at the origin the entran
e time

is the time of entry into (−∞, 0]. The main theoreti
al results are partition sum formulas for the

nth derivative of the entran
e time generating fun
tion and for the nth falling fa
torial entran
e

time moment. The latter result generalizes the well-known formula for the mean entran
e time.

We also give a partition sum formula for entran
e time probabilities, and a similar formula for

the position of the random walk 
onditioned on entran
e at time n. These results are impli
it
in Spitzer (1956) and Asmussen (2003), but the proofs are new and simpler. Finally, we give a

new partition sum formula for the position of the random walk 
onditioned on entran
e taken

pla
e after time n.
The results allow expli
it 
al
ulations of the entran
e time probabilities and moments in terms

of the marginal distribution of the random walk. The 
omputational e�ort gradually be
omes

prohibitive, but the �rst 100, say, entran
e time probabilities and moments are 
omputationally

feasible. We use the results to study the one-sided random walk embedded in the funding ra-

tio pro
ess by utilizing the fa
t that a one-sided random walk and its asso
iated (unrestri
ted)

random walk are identi
al up to the time of �rst entry into (−∞, 0]. However, the results are

generally appli
able and not limited to our pension fund appli
ation.

Optimizing utility from terminal wealth for an individual saving for retirement is treated by

numerous papers. The foundation was laid by Ri
hard (1975) and to mention a few, who among

other results obtain optimal investment strategies, there is, Huang andMilevsky (2008) who allow

for unspanned labor in
ome; Huang et al. (2008) who separate the breadwinner in
ome pro
ess

from the family 
onsumption pro
ess; Ste�ensen and Kraft (2008) who generalize to a multi-

state Markov 
hain framework typi
ally used by a
tuaries for modeling a series of life history

events; Bruhn and Ste�ensen (2011) who generalize to a multi-person household, with fo
us on

a married 
ouple with e
onomi
ally and/or probabilisti
ally dependent members; Kwak et al.
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(2011) who also 
onsider a household but fo
us on generation issues; Kronborg and Ste�ensen

(2013) who 
al
ulate the optimal investment strategy for a pension saver in the presen
e of a

minimum rate guarantee; and Gerber and Shiu (2000) who present a 
omprehensive dis
ussion

of terminal utility optimization in a pension saving 
ontext. There is also a vast literature on

modern investment management, founded by Markowitz (1952) and Merton (1971), aimed at

�nding optimal investment strategies without the pension aspe
t.

In 
ontrast to the literature 
ited above this paper takes the point of view of a pension

fund where a group of people share a 
ommon investment strategy. Investment gains are shared

through a bonus strategy by whi
h 
olle
tive funds above a threshold are transferred to individual

guarantees. Based on results on utility optimization of durable goods by Hindi and Huang

(1993) it 
an be shown that the optimal bonus strategy is to 
ontinuously attribute bonuses

whenever the funding ratio ex
eeds a 
ertain barrier � thereby not allowing the funding ratio

to ex
eed the barrier. In this paper, and in real life, the transfer is done periodi
ally rather than


ontinuously. Referen
es for 
ontinuous-time analysis of pension s
hemes taking both assumed

(te
hni
al) returns, realized returns and bonus into a

ount in
lude Norberg (1999), Ste�ensen

(2000), Norberg (2001), Ste�ensen (2004) and Nielsen (2006).

We assume the fund to follow a CPPI strategy. This strategy ensures that the fund remains

funded, and it is �lo
ally� optimal if we 
onsider the periods between possible bonus attributions

as lo
al horizons. More pre
isely, Preisel et al. (2010) point out that CPPI is optimal in a �nite

horizon setting with HARA-utility and a subsisten
e level 
orresponding to a terminal funding

ratio of one. CPPI strategies are treated, for the unrestri
ted 
ase, by Cox and Huang (1989),

and for the restri
ted 
ase, by Teplá (2001). Using a CPPI strategy, and thereby avoiding insol-

ven
y, as done in this paper, stands in 
ontrast to the literature on 
onstru
ting 
ontra
ts that

are fair between owners and poli
yholders, see e.g. Briys and de Varenne (1997) and Grosen and

Jørgensen (2000).

The 
urrent paper is related to Preisel et al. (2010), Kryger (2010) and Kryger (2011). We use

the same underlying funding ratio dynami
s, but the pension produ
t and the terms by whi
h

members enter and leave the fund di�er. In the 
ited papers members pay a �xed share (possibly

zero) of 
ontributions to the bonus potential on entry. This raises a number of issues regarding

intergenerational fairness. In the present setup the share depends on the funding status of the

fund in su
h a way that the 
ontra
t is always �nan
ially fair. Methodologi
ally, the 
ited papers

use various analyti
al approximations while the 
urrent paper relies almost ex
lusively on exa
t

results.

The main insight of Preisel et al. (2010) is that a given year's apparent su

ess of a large

bonus resulting from a high equity allo
ation 
an 
ome at the even higher pri
e of subsequent

large losses trapping the 
ompany at a low funding ratio for a long period. They also derive

approximations to the expe
ted bonus and funding ratio in stationarity. Kryger (2010) �nds

optimal investment strategies for power utility and mean-varian
e 
riteria. For �xed values of

the bonus threshold, he �nds optimal investment strategies in the 
lass of CPPI strategies for a

fund in stationary. It is found that di�erent investment strategies imply only modest di�eren
es

in utility and, hen
e, that an investment 
olle
tive 
an a

ommodate quite di�erent attitudes

towards risk. Finally, Kryger (2011) studies the impa
t of the pension design on e�
ien
y and

intergenerational fairness.

The rest of the paper is organized as follows. Se
tion 2 presents the theoreti
al 
ontributions

on entran
e times and moments of random walks. Se
tion 3 des
ribes the pension fund model,

and Se
tion 4 applies the random walk results to study bonus waiting times, the bonus size and

the funding ratio. Results are given for a fund started at the bonus threshold and for a fund in

stationarity. Se
tion 5 
ontains a 
omprehensive appli
ation in
luding a mean-varian
e analysis.

It also explains the exa
t simulation algorithm used in the analysis. Finally, the appendix


ontains proofs for the results of Se
tion 2 and additional lemmas.
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2 Random walks

In this se
tion we present a series of results on entran
e times and 
onditional 
hara
teristi


fun
tions of random walks. The results will be used in subsequent se
tions to provide a detailed

des
ription of the distribution of bonus times, bonus size and the funding ratio of the 
olle
tive

pension fund model under study. However, the results are generally appli
able and 
an be

applied in many other 
ontexts as well.

The entran
e time of a random walk is de�ned as the (�rst) time of entry into (−∞, 0] after
time 0. The results to follow devise how a number of quantities related to entran
e times 
an

be 
omputed as sums over partition sets. We present both new results and existing results with

new and simpler proofs. The results fall in three parts.

First, we derive a 
losed-form formula for the entran
e time probabilities of a random walk

started at the origin (Theorem 2.3). This result is also impli
it in the seminal paper by Spitzer

(1956), but we give here a simpler self-
ontained proof. Se
ond, we derive an expression for

the nth derivative of the generating fun
tion for the entran
e time (Theorem 2.5), whi
h we

subsequently use to derive a formula for the fa
torial moments (Theorem 2.6). These results are

new. Third, we derive formulas for the 
hara
teristi
 fun
tion of the position of the random walk


onditioned on entran
e at time n (Theorem 2.8) and on entran
e after time n (Theorem 2.9).

The �rst of these results is known, but the proof is new, while the se
ond result is new. Most of

the proofs rely on 
ombinatorial arguments, some of whi
h might be of independent interest, in

parti
ular Lemma A.1.

2.1 Entran
e times and partitions

Consider the random walk

S0 = 0 and Sn = Sn−1 +Xn for n ∈ N, (1)

where X1, X2, . . . are i.i.d. random variables. Following the notation and terminology of As-

mussen (2003) we let τ− denote the entran
e time to (−∞, 0], also known as the �rst (weak)

des
ending ladder epo
h, de�ned by

τ− = inf{n ≥ 1 : Sn ≤ 0}. (2)

In this se
tion our prime interest is the 
al
ulation of the entran
e time probabilities

τn = P (τ− = n) = P (S1 > 0, . . . , Sn−1 > 0, Sn ≤ 0), (3)

i.e. the probability that the entry into (−∞, 0] o

urs at the nth step. To fa
ilitate the study of

(τn)n∈N we introdu
e its generating fun
tion, de�ned for 0 ≤ s ≤ 1 by

τ(s) =
∞∑

n=1

τns
n. (4)

Let pn = P (Sn ≤ 0) for n ≥ 1. The following surprising theorem, originally due to Andersen

(1954)

1

, expresses τ in terms of the (marginal) probabilities pn. The original proof is 
ompli
ated
but a simple 
ombinatorial proof now exists, see e.g. Theorem XII.7.1 of Feller (1971).

Theorem 2.1. (Sparre Andersen Theorem) For 0 ≤ s < 1

log

(
1

1− τ(s)

)
=

∞∑

n=1

sn

n
pn. (5)

1

Erik Sparre Andersen (1919�2003) was a Danish mathemati
ian and a
tuary. He played a prominent role in

the design and operation of the Danish Labour Market Supplementary Pension S
heme (ATP) from its foundation

in 1964 and in the years to follow. The results of this paper rest to a large extent on the work of our former


olleague.

3



By Theorem 2.1 we 
an write the generating fun
tion as

τ(s) = 1− eH(s), where H(s) = −
∞∑

n=1

sn

n
pn. (6)

Now, sin
e

τn =
τ (n)(0)

n!
, (7)

where τ (n) denotes the nth derivative of τ , the entran
e time probabilities 
an in prin
iple be


al
ulated by repeated di�erentiation of expression (6). However, dire
t di�erentiation leads

to an exponentially in
reasing number of terms (the number of terms almost triples on ea
h

iteration) so this approa
h is infeasible in pra
ti
e for all but the smallest n. Fortunately, the

number of di�erent terms is substantially smaller. This observation gives rise to a summation

formula whi
h makes it 
omputationally feasible to 
al
ulate τn for n up to at least 100. In order
to state the result we de�ne the set of integer partitions of a given order.

De�nition 2.1. De�ne for n ≥ 1 the partition set of order n by

Dn =

{
(σ1, . . . , σn)

∣∣∣σ1 ∈ N0, . . . , σn ∈ N0,

n∑

i=1

iσi = n

}
, (8)

where N0 = {0, 1, 2, . . .}. For n = 0, D0 is the set 
ontaining the empty partition.

To illustrate the de�nition note that D1 = {(1)} and D2 = {(2, 0), (0, 1)}. Integer partitions
o

ur in number theory and 
ombinatori
s, and the size of Dn as a fun
tion of n (the partition

fun
tion) is a well-studied obje
t. The following asymptoti
 expression is due to Hardy and

Ramanujan (1918)

#Dn ≈
1

4n
√
3
eπ
√

2n/3. (9)

We note that the size of Dn in
reases sub-exponentially in n.
For later use, we de�ne for σ ∈ Dn the sign of the partition and two 
ombinatorial 
oe�
ients

sgn(σ) = (−1)
∑

n
i=1 σi , dσ =

n∏

i=1

σi! i
σi , cσ =

n!∏n
i=1 σi!(i!)σi

. (10)

We also need the following fundamental identity often used in 
onne
tion with generating

fun
tions, see e.g. Chapter 7 of Szpankowski (2001) for a proof.

Theorem 2.2. Provided

∑∞
n=1 anb

n

onverges absolutely

exp

( ∞∑

n=1

anb
n

)
= 1 +

∞∑

m=1

∑

σ∈Dm

bm

σ1!σ2! · · ·σm!

m∏

n=1

aσn

n . (11)

A 
ombination of Theorems 2.1 and 2.2 yields a partition sum formula for the entran
e time

probabilities in terms of the probabilities pn. This result 
an also be derived from Spitzer (1956),

but the present proof is 
onsiderably simpler.

Theorem 2.3. For n ≥ 1

τn = −
∑

σ∈Dn

sgn(σ)

dσ

n∏

i=1

pσi

i . (12)

Proof. See Appendix A.1.
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n 1 2 3 4 5 10 40 100 200

#Dn 1 2 3 5 7 42 37338 1.9057 · 108 3.9730 · 1012
#Naive 1 2 4 10 26 5.476 · 103 1.1257 · 1018 4.7720 · 1046 2.4594 · 1094

Table 1: Number of terms needed to 
al
ulate the entran
e time probabilities by formula (12)

and (7), respe
tively.

Provided pn are available Theorem 2.3 makes it feasible to 
al
ulate entran
e time proba-

bilities for fairly large values of n. Table 2.1 shows the size of Dn, i.e. the number of terms

in the partition sum (12), and the number of terms when (7) is used dire
tly.

2

Clearly, the


omputational gain is massive.

Theorem 2.3 also provides the following purely 
ombinatori
 result (whi
h is used in the

proof of Lemma A.1). For n ≥ 2
∑

σ∈Dn

sgn(σ)

dσ
= 0. (13)

This follows from (12) by 
onsidering the degenerate 
ase Xi ≡ 0 in whi
h 
ase pn = 1 for all n,
τ1 = 1 and τn = 0 for n ≥ 2.

The 
oe�
ients dσ obey a number of other interesting relations, e.g. the following theorem

whi
h shows that 1/dσ 
an be interpreted as a probability distribution on Dn. The proof of the

theorem also serves as an illustration of the 
ombinatorial method used throughout.

Theorem 2.4. For n ≥ 1 and 1 ≤ k ≤ n

∑

σ∈Dn

1

dσ
=
∑

σ∈Dn

kσk

dσ
= 1. (14)

2.2 Entran
e time moments

In prin
iple the entran
e time moments (and other 
hara
teristi
s) 
an be 
al
ulated from the

entran
e time probabilities, τn. However, sin
e the 
al
ulation of τn be
omes in
reasingly di�-


ult it is both theoreti
ally and pra
ti
ally important to have more dire
t means of 
al
ulating

moments. In this se
tion we present a formula for the falling fa
torial entran
e time moments,

E((τ−)n), where for integers m and n we denote by (m)n the nth falling fa
torial of m,

(m)n = m(m− 1) · · · (m− n+ 1). (15)

In parti
ular, (m)1 = m and (m)n = 0 for n > m. Our result generalizes the well-known formula

for the mean entran
e time

3

E(τ−) = exp

( ∞∑

k=1

1

k
P (Sk > 0)

)
. (16)

The formula for the fa
torial moments relies on the following main result whi
h gives a

partition sum representation of the nth derivative of the generating fun
tion. We denote by f (n)

the nth derivative of a fun
tion f .

Theorem 2.5. For n ≥ 1 and 0 ≤ s < 1

τ (n)(s) = −eH(s)
∑

σ∈Dn

cσHσ(s), (17)

where cσ is given by (10) and

Hσ(s) =
n∏

i=1

(
H(i)(s)

)σi

. (18)

2

The number of terms obtained by di�erentiating the generating fun
tion n times without 
olle
ting terms.

3

Expression (16) 
an be derived from Theorem 2.1 by a limit argument, see e.g. Theorem XII.7.3 of Feller

(1971).
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Proof. See Appendix A.2.

Note that Theorem 2.3 
an be derived from Theorem 2.5 sin
e τn = τ (n)(0)/n! and H(i)(0) =
−(i− 1)! pi. This 
onstitutes an alternative proof of Theorem 2.3 whi
h does not rely on Theo-

rem 2.2.

By monotone 
onvergen
e the nth fa
torial moment of τ− is given by

E((τ−)n) = lim
s→1−

τ (n)(s), (19)

whether or not the limit is �nite. Using Theorem 2.5 and (19) in a 
ombination with Lemmas A.1

and A.2 the following result for the nth fa
torial moment 
an be derived.

Theorem 2.6. If n ≥ 1 and

∑∞
k=1 k

n−2P (Sk > 0) < ∞ then

E((τ−)n) = exp

( ∞∑

k=1

1

k
P (Sk > 0)

)
n!

∑

σ∈Dn−1

n−1∏

i=1

(
hi

i!

)σi 1

σi!
< ∞, (20)

where, for n = 1, the last sum is 1 by de�nition, and for 1 ≤ i ≤ n− 1

hi =

∞∑

k=i

(k)i
k

P (Sk > 0). (21)

Proof. See Appendix A.2.

By use of Theorem 2.6 we 
an 
al
ulate entran
e time moments of any order. For the �rst

three moments we get

E (τ−) = exp

( ∞∑

k=1

qk
k

)
, (22)

E
(
τ2−
)
= E((τ−)2) + E(τ−) = E (τ−)

(
2

∞∑

k=1

qk + 1

)
, (23)

E
(
τ3−
)
= E((τ−)3) + 3E((τ−)2) + E(τ−)

= E (τ−)

(
3

∞∑

k=2

(k − 1)qk + 3
∞∑

k=1

qk

[ ∞∑

k=1

qk + 2

]
+ 1

)
, (24)

where qk = 1 − pk = P (Sk > 0). These formulas are all easy to evaluate to any desired degree

of a

ura
y.

2.3 Conditional 
hara
teristi
 fun
tions

In this se
tion we present results 
hara
terizing the position of the random walk upon entran
e

to (−∞, 0] (the weak des
ending ladder height) and the position when entran
e has not yet

o

urred. We will need the 
ombined generating and 
hara
teristi
 fun
tion de�ned for |s| < 1
and ζ ∈ R by

χ(s, ζ) = E
(
sτ−eiζSτ

−

)
. (25)

For a random variable X and an event A we write E(X ;A) for E(X1A), and E(X |A) for
E(X1A)/P (A). From Theorem VII 4.1 of Asmussen (2003) we have the following generalization

of Theorem 2.1

Theorem 2.7. For |s| < 1 and ζ ∈ R

log

(
1

1− χ(s, ζ)

)
=

∞∑

n=1

sn

n
E
(
eiζSn ;Sn ≤ 0

)
. (26)
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By 
ombining Theorems 2.7 and 2.2 we obtain a partition sum formula for the 
hara
teristi


fun
tion of the random walk given entran
e to (−∞, 0] at time n. This result is similar to

Theorem 2.3 for the entran
e time probabilities.

Theorem 2.8. For n ≥ 1 and ζ ∈ R

E
(
eiζSn |τ− = n

)
= − 1

τn

∑

σ∈Dn

sgn(σ)

dσ

n∏

k=1

(
E
(
eiζSk ;Sk ≤ 0

))σk
. (27)

Proof. See Appendix A.3.

It is also of interest to know the distribution of the random walk given that it has not yet

entered (−∞, 0]. It turns out that the 
hara
teristi
 fun
tion for this distribution 
an also be


al
ulated as a partition sum. The result is established by subtra
ting the 
hara
teristi
 fun
tion

of Theorem 2.8 up to time n from the un
onditional 
hara
teristi
 fun
tion and using Lemma A.1

to identify the resulting stru
ture.

Theorem 2.9. For n ≥ 1 and ζ ∈ R

E(eiζSn |τ− > n) =
1

P (τ− > n)

∑

σ∈Dn

1

dσ

n∏

k=1

(
E(eiζSk ;Sk > 0)

)σk
. (28)

Proof. See Appendix A.3.

Note that if P (τ− < ∞) = 1 then P (τ− > n) = 1 −
∑n

i=1 τi su
h that (28) 
an indeed be


al
ulated.

3 Pension fund model

We 
onsider a model for a 
olle
tive pension fund with a with-pro�ts pension produ
t. Ea
h


ontribution is split into a part giving a guaranteed payment and a part invested in a, possibly

leveraged, investment portfolio. The produ
t is with-pro�t in the sense that all guaranteed pay-

ments are in
reased, known as bonus, when the funding ratio ex
eeds a given threshold level.

The investment strategy and the bonus poli
y are 
ommon and all members re
eive the same

bonus (per
entage). In our model members enter and leave the fund on �nan
ially fair terms,

although this is not ne
essarily stri
tly true in pra
ti
e. Despite its simpli
ity the model re-

sembles the traditional 
olle
tive pension funds known from e.g. the Nordi
 
ountries and the

Netherlands. The random walk results presented in Se
tion 2 will be used to give an essentially


omplete des
ription of the dynami
s of the fund.

First, 
onsider a fri
tionless Bla
k-S
holes market 
onsisting of a bank a

ount, B, with risk

free short rate, r, and a risky sto
k, Z, with dynami
s given by

dB(t) = rB(t)dt, B(0) = 1, (29)

dZ(t) = (r + µ)Z(t)dt+ σZZ(t)dW (t), Z(0) = z0 > 0. (30)

Here r, µ and σZ are stri
tly positive 
onstants. The pro
ess W is a standard Brownian motion

on the probability spa
e (Ω,F , P ) equipped with the �ltration FW = (FW (t))t≥0 given by the

P -augmentation of the �ltration (σ{W (s); 0 ≤ s ≤ t})t≥0.

The de
ision to attribute a bonus or not is taken at a set of equidistant, dis
rete set of time

points 0 = t0 < t1 < . . .. We assume for simpli
ity that 
ontributions and bene�ts also fall at

these times. The market value of the guaranteed bene�ts, the reserve, is denoted R(t). Assuming
that mortality risk 
an be negle
ted by the law of large numbers (paramount to assuming that

7



realized mortality equals expe
ted mortality) the evolution of the reserve between potential

bonus times is given by

R(t) = R(ti)e
r(t−ti), where i = max{j ∈ N0 : tj ≤ t}. (31)

The total assets of the fund are denoted A(t) and the funding ratio of the fund is de�ned as

F (t) =
A(t)

R(t)
. (32)

The di�eren
e between total assets and the reserve, A(t)−R(t), is 
alled the bonus potential (or

surplus). We assume that the fund attributes bonuses a

ording to a threshold bonus strategy

su
h that at time ti all guaranteed payments are in
reased by

rBi =

{
0 if F (ti−) ≤ κ,
F (ti−)−κ

κ if F (ti−) > κ,
(33)

where κ is assumed to be stri
tly larger than 1. Note that immediately after a bonus attribution
the funding ratio equals κ. Let F̃i denote the funding ratio at time ti after a (possible) bonus

attribution, but before 
ontributions and bene�ts have fallen. Thus F̃i = F (ti−)/(1 + rBi ) =
min{F (ti−), κ}.

The pension produ
t:

• Contributions do not a�e
t the funding ratio, i.e. for 
ontributions re
eived at time ti only
the fra
tion 1/F̃i is guaranteed (at rate r) and enters the reserve while the remainder enters
the bonus potential.

• The initially guaranteed bene�t is entitled to bonuses from the time of 
ontribution to the

time of payment.

• Bene�ts do not a�e
t the funding ratio, i.e. guaranteed bene�ts paid out at time ti are
in
reased by F̃i (terminal bonus).

Note that the fra
tion of 
ontributions guaranteed at the risk-free rate depends on the 
urrent

funding ratio of the fund. Also note that for ea
h 
ontribution the member pays a pri
e to enter

the 
olle
tive fund, but he also re
eives his share of the surplus for ea
h bene�t paid out.

Let ci and bi denote the 
ontributions and bene�ts, respe
tively, at time ti, and let cGi and

bGi denote the part of 
ontributions and bene�ts guaranteed. Total assets and the reserve at

time ti is then given by

A(ti) = A(ti−) + ci − bi, (34)

R(ti) =
(
1 + rBi

)
R(ti−) + cGi − bGi , (35)

where cGi = ci/F̃i and bGi = bi/F̃i. Hen
e, by 
onstru
tion F (ti) = F̃i irrespe
tive of the size

of 
ontributions and bene�ts. It is not hard to show that the fa
t that pension savers enter

and leave the pension fund without e�e
ting the funding ratio makes the s
heme �nan
ially fair.

There is no redistribution of wealth between generations.

We assume that the pension fund has to stay funded at all times, i.e. its assets must not

fall below the reserve or, equivalently, the funding ratio must not fall below one. In order to

a
hieve this the fund pursues a CPPI (
onstant proportion portfolio insuran
e) strategy by whi
h

a 
onstant fra
tion, C, of the bonus potential is invested in sto
ks. The remaining assets are

invested in the risk-free asset. We allow for values of C greater than one, i.e. leverage of the

bonus potential is possible. The dynami
s of the assets between time ti and ti+1 is given by

dA(t) = (r + γ(t)µ)dt+ γ(t)σZdW (t), (36)
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where γ(t) = C F (t)−1
F (t) .

Let ∆ denote the time between possible bonus attributions, ti = i∆, and let Fi = F (ti).
It follows from Preisel et al. (2010) that the funding ratio pro
ess sampled at ti evolves like a
(dis
rete-time) Markov 
hain with dynami
s

Fi = min
{
(Fi−1 − 1)e(Cµ− 1

2C
2σ2

Z)∆+CσZ

√
∆Ui + 1, κ

}
, (37)

where the Ui's are i.i.d. standard normal variables. In parti
ular, if F0 > 1 all subsequent Fi's

are stri
tly larger than 1 (and at most κ).
The fund has to de
ide on an investment strategy, C, and a bonus poli
y, κ. A high bonus

threshold implies that the fund 
an invest more freely but also that only a small fra
tion of

the pension is guaranteed. This may or may not be in the interest of the members. Similarly,

an aggressive investment strategy implies a higher probability of very high returns, but also a

higher risk of very low returns (on the bonus potential).

3.1 Example

In this example we illustrate how an individual �ts into the pension s
heme. The pension saver

enters the pension s
heme (today) at age 25 and retire at age 65. Yearly pension 
ontributions are

paid until the time of retirement, with initial payment set at 2000 EUR and further 
ontributions,

assuming he is alive, in
reased with the risk-free rate, i.e.

ĉi = 2000er(i−25), for i = 25, . . . , 64. (38)

The guaranteed part of the 
ontributions be
ome ĉGi = ĉi/κ. As mentioned, the evolution of

the total reserve of the pension s
heme, given by (31), assumes that realized mortality equals

expe
ted mortality. This is realisti
 due to the law of large numbers. However, obviously

mortality 
annot be negle
ted when 
onsidering the individual poli
yholder's realized 
ash �ow.

In this example we model mortality by a Gompertz-Makeham hazard rate, u(x) = exp((x −
m)/b)/b, with modal value and s
ale parameter as in Milevsky and Young (2007); (m, b) =
(88.18, 10.5). Let ni denote the probability of survival until age i

ni = exp

(
−
∫ i

25

µ(s)ds

)
, for i ≥ 25.

By use of 
lassi
 a
tuarial notation we 
an write the at age i 
apital value of one unit of a life

annuity as

ai =

∞∑

j=65

nj

ni
e−r(j−i), i = 25, . . . , 64.

The part of the 
ontribution ĉGi is at the time of payment turned into a guaranteed life long 
ash

�ow starting upon time of retirement. The guaranteed bene�t re
eived by the poli
yholder at

age i, not taking bonus attributions into a

ount and assuming he is alive, be
omes (does not

depend on age)

b̂
G(no bonus)
i =

64∑

j=25

ĉGj
aj

, for i = 65, . . . ,∞. (39)

The guaranteed bene�t re
eived by the poli
yholder at age i, taking bonus attributions into

a

ount, and assuming he is alive, be
omes

b̂Gi =

64∑

j=25


 ĉGj

aj

i∏

k=j+1

(1 + rBk )


 , for i = 65, . . . ,∞. (40)
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In addition the poli
yholder re
eives a terminal bonus su
h that the total bene�t at time i
be
omes b̂i = κb̂Gi .

Figure 1 shows the expe
ted 
ontributions and bene�ts made/re
eived by the poli
yholder.

Relating to (34)-(35) we get ci = ĉini and bi = b̂ini, where ci and bi should be interpreted as the

expe
ted 
ash �ows for ea
h individual of a large 
ohort. We set r = 3%, µ = 4%, κ = 1.5, and
C = 0 or C = 1.5. We 
onsider a simple but illustrative example where the expe
ted return on

sto
ks is realized every year. Thereby for C stri
tly positive a bonus attribution is made every

year.

The expe
ted 
ontributions ci, i = 25, . . . , 64, illustrated in Figure 1 as the positive bars,

fall into two parts; the (expe
ted) guaranteed part cGi (dark gray bars) and the (expe
ted)


ontribution to the 
olle
tive bonus potential ci − cGi (light gray).

The expe
ted bene�ts bi, i = 65, . . . ,∞, re
eived by the poli
y holder, illustrated in Figure 1

as the negative bars, 
an be split into three parts; the (expe
ted) upon 
ontribution guaranteed

bene�ts b
G(no bonus)
i (dark gray bars), (expe
ted) bene�ts originating from bonus attributions

b
G(no bonus)
i − bGi , and the (expe
ted) terminal bonus (b

G(no bonus)
i − bGi )(κ− 1).

The upper plot in Figure 1 is without investments, i.e. C = 0, and the lower plot 
orresponds

to C = 1.5, i.e. slight leverage of the bonus potential. Although Figure 1 shows an example

where the expe
ted return on sto
ks is realized every year, it should be 
lear from Figure 1 that

parti
ipating in the risky part of the investment market is expe
ted to 
ontribute 
onsiderable

positively to the pension bene�ts re
eived by the poli
yholder. Furthermore, note that as the

retiree gets older the part of the guaranteed bene�ts originating from bonus attributions be
omes

a bigger part of the total bene�t.

3.2 Colle
tive pension funds in the real world

Real world 
olle
tive pension funds are operated on a going-
on
ern basis. The balan
e is


omposed of provisions for individual pension entitlements and 
olle
tively owned reserves (bonus

potential). The latter a
ts both as a 
ushion to absorb �nan
ial and insuran
e risks and as a

sour
e for �nan
ing pension indexation (bonuses). Colle
tive reserves are to be used �in the

best interest of members� but typi
ally there are no expli
it obje
tives to guide their use. One

problem fa
ed by the fund board is that there are often 
on�i
ting interests between generations.

In general, old members prefer indexation over investment freedom, while young members prefer

investment freedom with the potential for long-term gains rather than immediate indexation.

Thus in pra
ti
e it is not obvious how to a
t in the best interest of (all) members in a 
olle
tive

s
heme.

In this paper we propose to resolve the ambiguous 
on
ept of �best interest of members�

by optimizing the stationary dynami
s of the fund. Given the long time horizon from �rst


ontribution to last bene�t for ea
h individual member and given the inde�nite time horizon

of the fund itself, it 
an indeed be argued that �optimal� stationary dynami
s should be the


ommon obje
tive. In the se
tions to follow we will 
hara
terize the stationary dynami
s of the

model fund and propose an optimization 
riterion to be evaluated in stationarity. The analysis

rests on a number of simplifying assumptions and we dis
uss the most important of these below.

We assume that the bonus potential is only a�e
ted by investment returns and bonus at-

tributions. In pra
ti
e, however, the bonus potential must also 
over other risks, in parti
ular

longevity risk. Life expe
tan
y in the industrialized world has been in
reasing over the past

sixty years and it 
ontinues to in
rease at a surprisingly fast pa
e, e.g. see Tuljapurkar et al.

(2000). Pension funds o�ering guaranteed lifelong annuities are therefore exposed to substan-

tial longevity risk. If life expe
tan
y 
ontinues to evolve at the 
urrent pa
e reserves might be

insu�
ient and the shortfall must be 
overed by the bonus potential. Further, regulation might

require a reservation of 
apital to 
over longevity risk whi
h 
eteris paribus implies less room for

investment risk. Thus in pra
ti
e longevity risk is likely to in�uen
e the investment pro�le of

the fund. On the other hand, there are also pension funds o�ering only lump sum payments at

retirement or where bene�ts are linked to the life expe
tan
y experien
e. These funds are 
lose
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Figure 1: The expe
ted 
ash �ow of an individual poli
y holder: Positive parts, from age 25 to

64, are expe
ted pension 
ontributions, and negative parts, from age 65 to 110, are expe
ted

bene�ts. Dark gray bars: Original guaranteed parts. Gray bars: In
reased guaranteed bene�ts

due to bonuses. Light gray bars: Bonus potential 
ontributions and terminal bonus bene�ts,

respe
tively. Upper plot 
orresponds to C = 0, and lower plot 
orresponds to C = 1.5.

to ful�lling our assumption of no longevity risk.

Longevity risk is a systemati
 risk that a�e
ts an entire member base regardless of its size.

In addition to this risk, a real world pension fund also fa
es so-
alled unsystemati
 mortality risk


aused by the random nature of death at the individual level. However, in 
ontrast to longevity

risk the unsystemati
 risk is diversi�able a
ross members and will 
ause only minor �u
tuations

in the bene�t out�ow for a large fund. We impli
ity make the assumption that the pension fund

under 
onsideration is so large that unsystemati
 mortality risk 
an safely be ignored.

Another key assumption is the ability of the fund to perfe
tly hedge its liabilities. In the

Bla
k-S
holes market there is a single, 
onstant interest rate, and all nominal payments 
an

therefore be repli
ated (hedged) by a 
ash deposit in the bank a

ount. The 
onstant rate

implies that the reserve amortizes at the same rate irrespe
tive of when the bene�ts fall due,

and 
onsequently we do not need to take the pro�le of the underlying bene�t 
ash �ow into

a

ount. Realism 
ould be added by introdu
ing a sto
hasti
 interest rate model. This would

give rise to a term stru
ture and liabilities should then be hedged by a portfolio of zero-
oupon

bonds. The interest rate sensitivity of the reserve 
ompli
ates the analysis, but as long as the

liability 
an be hedged the situation is essentially the same as the one 
onsidered.

In pra
ti
e, however, the reserve is typi
ally not 
al
ulated on a tradable market 
urve,

and the reserve therefore does not represent the value of a �nan
ial hedge. For example, the

dis
ount 
urve under the forth
oming Solven
y II regulatory framework in Europe is an intri
ate


onstru
tion whi
h is only partly market based, and there is no guarantee that a �Solven
y II
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reserve� is su�
ient to hedge the liability. Simply put, our analysis is 
on
erned with the �nan
ial

value of liabilities, not the reported value.

In line with the vast majority of the related literature, we assume that the fund 
an operate

without fri
tions in the 
apital markets. This implies that the fund 
an lever the bonus potential

and also derisk fast enough to remain fully funded in all situations. Leverage through the use

of highly liquid index futures are both available and used in real life. However, a
tual markets

do not evolve 
ontinuously and there is a risk of the fund in
urring larger losses in reality

than in the model. To fully 
ontrol the downside risk, the fund 
an use options either as tail

prote
tion or to obtain one-sided sto
k market parti
ipation, but both of these strategies 
ome

at the pri
e of lower expe
ted returns. Many pension funds also invest in illiquid assets whi
h

redu
e investment �exibility. It seems fair to say that most pension funds do not adapt their risk

exposure as dynami
ally as assumed in the analysis, but it is more of a 
hoi
e than a ne
essity.

Finally, we make the assumption that the funding ratio is invariant to 
ontributions entering

and bene�ts leaving the fund. This is a stri
t version of the reasonable requirement that there

should be no systemati
 redistribution of wealth between generations. Of 
ourse, in pra
ti
e,

this requirement is interpreted somewhat more loosely. From a mathemati
al point of view the

�funding invarian
e� is important, be
ause it allows us to ignore the underlying demographi
s.

Otherwise, we would have to expli
itly model the 
ontribution pro�le over an entire population

and its evolution over time. The assumption on 
ontributions, bene�ts and bonus attributions

all taken pla
e at the same time is however made only for notational 
onvenien
e and 
an easily

be relaxed.

3.3 Outline

The purpose of the rest of the paper is twofold. First, we 
hara
terize the impa
t of C and κ
in terms of bonus time (time between bonus attributions), bonus size and funding ratio. The


hara
terization is provided for funds started at κ and in stationarity (the long-run average).

Se
ond, we propose a 
riterion by whi
h κ and C 
an be determined. The 
riterion is

evaluated in stationarity to re�e
t the fa
t that the fund is 
olle
tive and should be designed for

the bene�t of the average member. The simple pension produ
t to be 
onsidered is the 
ase in

whi
h a 
ontribution of one is made at time t = 0 for a bene�t paid out in its entirety at t = T
(retirement). In this 
ase the bene�t at retirement be
omes

OT =
F (T )

F (0)
erT

T∏

i=1

(
1 + rBi

)
. (41)

In prin
iple, di�erent 
ontribution and bene�t pro�les, e.g. as in Subse
tion 3.1, 
ould also be

analyzed. The point to note is that the payo� depends solely on the funding ratio dynami
s.

4 Bonus and funding ratio

The time between 
onse
utive bonuses, the size of the bonus and the funding ratio given no

bonus has yet been attributed 
an all be analyzed by the random walk results of Se
tion 2.

Consider the following transformation

Yn = − log

(
Fn − 1

κ− 1

)
for n ∈ N0. (42)

This transformation turns the funding ratio pro
ess (37) into the one-sided random walk

Yn = (Yn−1 +Xn)
+, (43)
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where the Xn's are i.i.d. normally distributed with mean −
(
Cµ− 1

2C
2σ2

Z

)
∆ and varian
e

C2σ2
Z∆. Note that Fn = κ 
orresponds to Yn = 0, while funding ratios 
lose to one 
orre-

spond to high values of Y .
Along with Y we also 
onsider the (unrestri
ted) random walk of Se
tion 2,

S0 = 0 and Sn = Sn−1 +Xn for n ∈ N, (44)

with the same Xn's as in (43). The distribution of Sn is given by

Sn ∼ N

(
−n

(
Cµ− 1

2
C2σ2

Z

)
∆, nC2σ2

Z∆

)
. (45)

Thus, in the notation of Se
tion 2 we have

pn = P (Sn ≤ 0) = Φ

(√
n∆

µ− 1
2Cσ2

Z

σZ

)
, (46)

where Φ denotes the 
umulative distribution fun
tion (CDF) of a standard normal distribution.

4.1 Stationarity

The �rst question of interest is whether the fund admits a stationary distribution or not. In the

stationary 
ase the funding ratio distribution 
onverges towards a non-degenerate distribution,

otherwise it 
onverges (in probability) towards one. The following result answers the question

in terms of the aggressiveness of the investment strategy (the result was also by Preisel et al.

(2010) albeit in a di�erent parametrization).

Proposition 4.1. The funding ratio pro
ess (37) admits a stationary distribution if and only if

C < 2µ
σ2
Z

.

Proof. By Proposition 11.5.3 of Meyn and Tweedie (2009) we have that the Y -pro
ess, and
hen
e the F -pro
ess, admits a stationary distribution i� the mean of the in
rements Xn is

stri
tly negative, i.e. i� C < 2µ
σ2
Z

.

When it exists, we will denote the stationary funding ratio distribution by π. We note that

the existen
e of a stationary distribution is independent of how often (∆) and at whi
h level

(κ) a bonus is allotted. A stationary distribution exists if and only if the median return on the

bonus potential is positive. If the bonus potential is invested more aggressively than that it will

eventually get lost (in the boundary 
ase, C = 2µ/σ2
Z , bonus will in fa
t be attributed in�nitely

often, but the average time between ea
h bonus is in�nite!).

4.2 Bonus times

We refer to the time between 
onse
utive bonus attributions as bonus times, or more pre
isely

bonus waiting time. Formally, these are de�ned by

T1 = inf{n ≥ 1 : Fn = κ} = inf{n ≥ 1 : Yn = 0}, (47)

and, re
ursively, for k ≥ 2

Tk = inf{n ≥ 1 : FTk−1+n = κ} = inf{n ≥ 1 : YTk−1+n = 0}. (48)

Consider �rst the 
ase where F0 = κ. Then Y0 = 0 and the �rst bonus time 
oin
ides with

the entran
e time of S to (−∞, 0], i.e. T1 = τ−, where τ− is given by (2) of Se
tion 2. Further,

sin
e the funding ratio is κ after a bonus attribution it follows by the Markov property that all

subsequent bonus times are independent and distributed as T1.
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Consider next the stationary 
ase and assume that F0 is distributed a

ording to the sta-

tionary funding ratio distribution. Imagine that the fund has been operating sin
e time minus

in�nity. The probability that at time 0 we are in a period (between two bonuses) of length k
is then given by kτk/

∑∞
n=1 nτn, i.e. the probability is proportional to the length of the period

times the frequen
y by whi
h it o

urs. Further, given that we are in a period of length k the

probability that we are n pla
es (n ≤ k) away from the end is 1/k, sin
e ea
h position is equally

likely. Summing over all possible k's we get that the probability that the next bonus o

urs at

time n ≥ 1 is given by

Pπ(T1 = n) =

∞∑

k=n

1

k

(
kτk∑∞

n=1 nτn

)
=

∑∞
k=n τk

E(τ−)
=

1−∑n−1
k=1 τk

E(τ−)
, (49)

where we use subs
ript π to denote that F0 is drawn from the stationary distribution. When

the �rst bonus (after time 0) has been attributed the funding ratio is κ. Hen
e, all subsequent
bonus times are distributed as τ−.

Using subs
ript κ to denote the 
ase F0 = κ we thus have

Proposition 4.2. For k ≥ 1 and n ≥ 1

Pκ(Tk = n) = τn, (50)

and, provided the stationary distribution exists,

Pπ(Tk = n) =

{(
1−∑n−1

k=1 τk

)
/E(τ−) for k = 1,

τn for k ≥ 2,
(51)

where τn is given by (12) of Theorem 2.3 and E(τ−) is given by (16) of Se
tion 2.2

Note that in stationarity the probability of re
eiving a bonus in any given year is

Pπ(r
B
1 > 0) = Pπ(Y1 = 0) = Pπ(T1 = 1) =

1

E(τ−)
. (52)

This relationship is also known as Ka
's theorem.

In the stationary 
ase the drift of S is negative and it is not hard to show that the 
riterion

of Theorem 2.6 is satis�ed for all n. Hen
e, the time between bonuses has fa
torial moments of

all orders and these 
an be 
al
ulated by (20) of Theorem 2.6.

4

4.3 Number of bonuses

The number of bonuses in a given period 
an be 
al
ulated from the bonus time distribution.

Let Rk = T1 + . . . + Tk denote the time of the k'th bonus, also known as the renewal epo
hs.

For F0 = κ and F0 ∼ π the distribution of Rk 
an be 
al
ulated by the re
ursion

P∗(R1 = n) = P∗(T1 = n), (53)

P∗(Rk = n) =

n−1∑

j=k−1

P∗(Rk−1 = j)τn−j . (54)

where P∗(T1 = n) is given by Proposition 4.2 (and ∗ is either κ or π).
Let Nn denote the number of bonuses from time 1 to time n. We have

P∗(Nn ≤ k) = P∗(Rk+1 > n) = 1−
n∑

j=k+1

P∗(Rk+1 = j), (55)

where ∗ is either κ or π.
4

In fa
t, it 
an be shown that Y is so-
alled geometri
ally ergodi
 whi
h implies exponential moments of the

return time to 0, i.e. the time between bonuses.
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4.4 Bonus per
entage

The bonus per
entage distribution 
an be derived from the (des
ending) ladder height distribu-

tion of the random walk. For F0 = κ the events (T1 = n) and (τ− = n) are identi
al and on this

event the bonus per
entage given by (33) be
omes

rBn =
κ− 1

κ

(
e−Sn − 1

)
. (56)

The mean bonus per
entage given the time of bonus 
an then be 
al
ulated by use of Theorem 2.8.

Proposition 4.3. For n ≥ 1

Eκ

(
rBn
∣∣T1 = n

)
=

κ− 1

κ

[
E
(
e−Sn

∣∣τ− = n
)
− 1
]
, (57)

where

E
(
e−Sn

∣∣τ− = n
)
= − 1

τn

∑

σ∈Dn

sgn(σ)

dσ

n∏

k=1

(
E
(
e−Sk ;Sk ≤ 0

))σk
(58)

with

E
(
e−Sk ;Sk ≤ 0

)
= ekCµ∆Φ

(√
k∆

µ+ 1
2Cσ2

Z

σZ

)
. (59)

Further, for n ≥ 1 and provided the stationary distribution exists

Eπ

(
rBn
∣∣T1 = n

)
=

1

Pπ(T1 = n)

∞∑

k=0

Eκ

(
rBn+k

∣∣T1 = n+ k
) τk+n

E(τ−)
. (60)

Proof. Formula (57) follows dire
tly from (56). Theorem 2.8 identi�es the 
onditional distri-

bution of Sn given τ− = n as a linear 
ombination of 
onditional normal tail measures. Sin
e

the normal distribution has exponential moments of all orders we 
on
lude (58) by dominated


onvergen
e. Expression (59) follows from (45) by standard 
al
ulations.

For the stationary 
ase we 
onsider a fund whi
h has been run sin
e time minus in�nity. Let

λ denote time sin
e a bonus was last attributed,

λ = inf{n ≥ 0 : F−n = κ} = inf{n ≥ 0 : Y−n = 0}. (61)

By the argument of Se
tion 4.2 leading to (49) and the Markov property we have

Pπ (T1 = n, λ = k) =
1

n+ k

(n+ k)τk+n

E(τ−)
=

τk+n

E(τ−)
, (62)

Eπ

(
rBn
∣∣T1 = n, λ = k

)
= Eκ

(
rBn+k

∣∣T1 = n+ k
)
. (63)

By summing over all possible values of λ we obtain

Eπ

(
rBn
∣∣T1 = n

)
=

1

Pπ(T1 = n)
Eπ

(
rBn ; T1 = n

)

=
1

Pπ(T1 = n)

∞∑

k=0

Eπ

(
rBn ; T1 = n, λ = k

)

=
1

Pπ(T1 = n)

∞∑

k=0

Eπ

(
rBn
∣∣T1 = n, λ = k

)
Pπ (T1 = n, λ = k) . (64)

Finally, inserting (62) and (63) in (64) yields (60).

Higher order polynomial moments of rB 
an be expressed in terms of exponential moments

of Sn by expanding (56). It is straightforward to extend Proposition 4.3 to 
over this 
ase also.
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4.5 Funding ratio

We 
onsider at last the funding ratio of the fund given that no bonus has yet been attributed.

For F0 = κ the events (T1 > n) and (τ− > n) are identi
al and on this event

Fn = (κ− 1)e−Sn + 1. (65)

Polynomial funding ratio moments 
an be derived by use of Theorem 2.9. For the mean funding

ratio we have the following result.

Proposition 4.4. For n ≥ 1

Eκ

(
Fn

∣∣T1 > n
)
= (κ− 1)E

(
e−Sn

∣∣τ− > n
)
+ 1, (66)

where

E(e−Sn |τ− > n) =
1

P (τ− > n)

∑

σ∈Dn

1

dσ

n∏

k=1

(
E(e−Sk ;Sk > 0)

)σk
(67)

with

E
(
e−Sk ;Sk > 0

)
= ekCµ∆Φ

(
−
√
k∆

µ+ 1
2Cσ2

Z

σZ

)
. (68)

Further, for n ≥ 1 and provided the stationary distribution exists

Eπ

(
Fn

∣∣T1 > n
)
=

1

Pπ(T1 > n)

∞∑

k=0

Eκ

(
Fn+k

∣∣T1 > n+ k
)
Pπ(T1 = n+ k + 1), (69)

Proof. We will only prove (69). With λ as in (61) and by use of (62) we have

Pπ(T1 > n, λ = k) =

∞∑

i=n+1

Pπ(T1 = i, λ = k) =

∞∑

i=n+1

τi+k

E(τ−)
= Pπ(T1 = n+ k + 1), (70)

and, by the Markov property,

Eπ

(
Fn

∣∣T1 > n, λ = k
)
= Eκ

(
Fn+k

∣∣T1 > n+ k
)
. (71)

Then

Eπ

(
Fn

∣∣T1 > n
)
=

1

Pπ(T1 > n)
Eπ (Fn; T1 > n)

=
1

Pπ(T1 > n)

∞∑

k=0

Eπ (Fn; T1 > n, λ = k)

=
1

Pπ(T1 > n)

∞∑

k=0

Eπ

(
Fn

∣∣T1 > n, λ = k
)
Pπ(T1 > n, λ = k). (72)

By inserting (70) and (71) into (72) we obtain (69).

5 Appli
ations

In the following we 
al
ulate key statisti
s for the pension fund model of Se
tion 3, and we

illustrate how these statisti
s are in�uen
ed by the bonus threshold (κ) and the investment

strategy (C). Based on the results of Se
tion 4 we 
al
ulate the bonus time distribution, the

bonus time moments, the number of bonuses, the expe
ted bonus and the expe
ted funding ratio

given no bonus. Statisti
s are 
al
ulated for a fund at the bonus threshold and for a fund in

stationarity.
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In Se
tion 5.2 we 
onsider a pension saver paying one monetary unit to the pension fund and

re
eiving 40 years later his terminal pension bene�t as a lump sum. Closed form expressions

for the pension bene�t mean and varian
e are derived for a fund at the bonus threshold at the

time of the 
ontribution. Further, we present in Proposition 5.1 an exa
t simulation algorithm

whi
h allows the 
al
ulation of the pension bene�t mean and varian
e in stationarity. This is

used to �nd the investment strategy optimizing the expe
ted payout in stationarity for given

bonus threshold, i.e. the expe
ted payout for the average saver.

Exa
t samples from the stationary distribution 
an also be obtained by the algorithm of Ensor

and Glynn (2000). Their algorithm uses exponential tilting and requires exponential moments of

the innovation distribution to generate independent, identi
ally distributed samples. In 
ontrast,

our algorithm generates partly dependent, identi
ally distributed samples with no distributional

assumptions.

We assume throughout that a bonus is (possibly) attributed on
e a year (∆ = 1), and we

use the following 
apital market parameters r = 3%, µ = 4%, and σZ = 15%.

5.1 Chara
terization

As a base 
ase example we 
hoose C = 1.5 and κ = 1.5. Thus when the fund is at the bonus

threshold 2/3 of 
ontributions are guaranteed the risk-free rate r. For 
ontributions 
ommitted to
the fund at lower funding ratios, i.e. in periods between bonuses, a larger fra
tion is guaranteed.

Note that sin
e C is larger than one the bonus potential is leveraged, i.e. the amount invested

in sto
ks is larger than the bonus potential. At the bonus threshold the fra
tion of total assets

invested in sto
ks is given by (1−(1/κ))C. For a base 
ase fund at the bonus threshold a fra
tion
of 1/2 of total assets are invested in sto
ks.

Stationarity

Only investment strategies whi
h give rise to a stationary funding ratio pro
ess are 
onsidered

viable options for a 
olle
tive pension fund. Otherwise the funding ratio will (essentially) 
on-

verge to one implying that all assets are invested in the risk-free asset only or, equivalently, that

all 
ontributions are fully guaranteed. Sin
e one of the purposes of entering a 
olle
tive fund is

to get a

ess to the 
apital market in a 
ost-e�e
tive way, the latter situation de�es the purpose

of an investment 
olle
tive.

5

Proposition 4.1 provides an upper bound on the investment strategy, C, for a stationary

distribution to exist. The bound depends on the 
apital market parameters only, and neither on

the threshold (κ) nor the frequen
y of possible bonus attributions (∆). For the 
apital market

parameters stated above the fund admits a stationary distribution if and only if C is at most

3.56. Hen
e, with C = 1.5 the base 
ase fund is stationary.

For higher values of σZ and/or smaller values of µ the upper bound is appre
iably smaller.

For the higher, but not unrealisti
, volatility of σZ = 20% and with the same risk-premium of

µ = 4% the upper bound on C is 2. For a base 
ase fund at the threshold the bonus potential


onstitutes one third of total assets. In this 
ase, a bound of 2 implies that the fund 
an invest at
most two thirds of its assets in sto
ks. Thus, the stationarity requirement 
an impose material


onstraints on the investment strategy. Figure 2 illustrates the upper bound on C for di�erent

market parameter sets.

Bonus times

The �rst bonus time, T1, measures the time of the �rst bonus after time zero. For a fund initially

at the bonus threshold the distribution of T1 
an be identi�ed as the distribution of τ−, i.e. the
entran
e time to (−∞, 0] of the asso
iated random walk. For a fund in stationarity, however, it

5

The other main purpose of a 
olle
tive fund is the ability to provide lifelong bene�t streams through �di-

versi�
ation� of the individual member's time of death. However, in the 
urrent paper we do not 
onsider this

aspe
t.
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Figure 2: Upper bound on the fra
tion of the bonus potential invested in risky assets (C) for a
stationary funding ratio pro
ess to exist. The bound is shown as a fun
tion of expe
ted ex
ess

return of the risky asset (µ) for sele
ted values of volatility (σZ). From highest to lowest the

bounds 
orrespond to σZ = 10%, 12.5%, 15%, 17.5% and 20%. The dot indi
ates the base 
ase

values of (µ,C) = (4%, 1.5).

typi
ally takes longer before the �rst bonus is attributed sin
e the funding ratio at time zero is

often below the bonus threshold. On
e the �rst bonus is attributed, the waiting time between

all subsequent bonuses is distributed as τ− regardless of the funding ratio at time zero.

It turns out, perhaps somewhat surprising, that for a fund starting out either at the bonus

threshold or in stationary the distribution of T1 depends only on the investment strategy, and not
on the bonus threshold.

6

The top left plot of Figure 3 shows the distribution of T1 in these two


ases as given by Proposition 4.2. For a base 
ase fund at the bonus threshold the probability of

a bonus at the �rst year is over �fty per
ent, while the same probability in stationarity is only

about twenty per
ent. The large di�eren
e between these values implies that in stationarity the

fund is typi
ally �between bonuses�.

The probability of a bonus at the �rst year as a fun
tion of the investment strategy is shown

in the bottom left plot of Figure 3. For a fund at the bonus threshold, the probability is over

�fty per
ent for all 
onsidered investment strategies albeit de
reasing in C. The stationary

probability on the other hand tends to zero as C approa
hes the upper bound for stationarity

of 3.56. Re
all that the stationarity probability also has the interpretation as the long-term

average, i.e. the frequen
y with whi
h bonuses will be attributed over long horizons (regardless

of the initial funding status).

Moments of the time between bonuses 
an be 
al
ulated by Theorem 2.6. The mean and

standard deviation for various values of C are shown in Table 2; as mentioned above the distribu-

tion and hen
e the moments depend only on the investment strategy. In the base 
ase the mean

is �ve years, but with a standard deviation of almost fourteen years. Thus there is 
onsiderable

variability in the length of the periods between bonuses. For larger values of C the mean and,

in parti
ular, the standard deviation in
rease. A fund with C = 3 is still stationary but there

will be de
ades, and even 
enturies, with no bonus. However, by Proposition 4.1 we have that

6

However, for a fund starting out at a given funding ratio (below the bonus threshold) the distribution of T1
does of 
ourse depend on the bonus threshold also.
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Figure 3: Solid 
urves 
orrespond to F0 = κ and dashed 
urves to the stationary 
ase, F0 ∼ π.
For the upper plots C = 1.5. Upper left: Distribution of the �rst bonus. Lower left: Probability

of a bonus at the �rst year as a fun
tion of the investment strategy C. Upper right: Distribution
of the number of bonuses in 40 years. Lower right: Probability of no bonuses in 40 years as a

fun
tion of the investment strategy C.

the funding ratio admits a stationary distribution i� the median return on the bonus potential

is positive (for a base 
ase fund that is C < 3.56). In other words, the stationarity requirement

imposes a median time between bonuses

7

of 1. We 
on
lude that the distribution of the waiting

times between bonuses is heavily right skewed.

C 1 1.5 2 2.5 3

E(τ−) 4.12 5.02 6.49 9.35 17.39

SD(τ−) 9.87 13.73 20.93 37.55 98.60

Table 2: The mean and standard deviation of the time between bonuses for di�erent investment

strategies C. In all 
ases the median is 1.

Number of bonuses

The number of bonuses from time 1 to time n is denoted Nn. The distribution of Nn 
an be


al
ulated from the distributions of T1 and τ− as des
ribed in Se
tion 4.3. For a fund starting

out either at the bonus threshold or in stationary the distribution of Nn depends only on the

investment strategy, and not on the bonus threshold.

7

De�ned as min{n ∈ N :
∑

n

i=1
τi ≥ 0.5}
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The top right plot of Figure 3 shows the distribution of N40 for a base 
ase fund. For a

base 
ase fund starting out at the bonus threshold the distribution of N40 is unimodal and the

number of bonuses will most likely be around 10. In the stationarity 
ase, however, there is an

additional peak at zero. There is thus a rather large probability of about �fteen per
ent of no

bonus at all in forty years, 
orresponding to the events where the fund is initially at a (very)

low funding level. If a bonus is attributed at least on
e the fund evolves like a fund started at

the bonus threshold for the remaining period. The part of the stationary distribution of N40 at

one and above therefore looks like a s
aled and shifted version of the �threshold� distribution.

The probability of no bonuses in forty years as a fun
tion of the investment strategy is

depi
ted in the bottom right plot of Figure 3. For in
reasing C, the probability is modestly

in
reasing for a fund at the bonus threshold, while the stationary probability in
reases to one.

Bonus per
entage

In 
ontrast to the time of bonus, the bonus per
entage (
onditioned on a bonus being given)

depends on both the investment strategy and the bonus threshold. It also depends on the time

sin
e the last bonus.

The bonus per
entage is determined by the funding ratio distribution of the year prior; the

higher the funding ratio the higher the 
onditional expe
ted bonus.

8

If a fund starting at the

bonus threshold does not give a bonus in the �rst year the funding ratio will be stri
tly below

the bonus threshold. This implies that a bonus in the se
ond year (if given) is on average smaller

than a bonus in the �rst year (if given). This argument is hard to 
ontinue formally, but it seems

at least intuitively reasonable that the expe
ted bonus will be de
reasing in the time sin
e the

last bonus.

The bonus per
entage 
onditioned on the value of T1 
an be 
al
ulated by Proposition 4.3.

It is shown in the top left plot of Figure 4 for the base 
ase fund. We see that the 
onditional

expe
ted bonus qui
kly drops by one to two per
entage points depending on how the fund is

started, and then levels o� to just below 5.5%.

The middle left plot of Figure 4 shows the expe
ted value of the �rst bonus,

E(rBT1
) =

∞∑

n=1

E(rBn |T1 = n)P (T1 = n), (73)

for the base 
ase fund. The expe
ted bonus (when given) is in
reasing in C, both in stationarity

and for a fund starting at the bonus threshold. In stationarity, however, the frequen
y with whi
h

bonuses are attributed de
reases with C, 
f. lower left plot of Figure 3. The average bonus in

stationarity is therefore a trade-o� between many, small bonuses and few, large bonuses. The

average bonus in stationarity,

Eπ(r
B) = Eπ(r

B
1 |T1 = 1)Pπ(T1 = 1), (74)

is shown in the lower left plot of Figure 4. It is seen that the long-term average bonus is

maximized for C just below 2.
It follows from Proposition 4.3 that the average bonus for funds with the same C but di�erent

bonus thresholds are linearly related. Spe
i�
ally, the average bonus in stationarity is related by

E(C,κ2)
π (rB) =

κ2 − 1

κ2

κ1

κ1 − 1
E(C,κ1)

π (rB). (75)

This implies that plots for di�erent thresholds are s
aled versions of ea
h other. In parti
ular,

the average bonus in stationarity is maximized for the same C. It also follows that the average
bonus for a fund with κ = 3 is twi
e as high as the average bonus for a fund with κ = 1.5 (base

ase value). Of 
ourse, the guaranteed part to whi
h the bonus is applied is 
orrespondingly

smaller.

8

This in fa
t is not obvious, sin
e we 
ondition on a bonus being given. It 
an nevertheless be shown as a


onsequen
e of sto
hasti
 ordering and log-
on
avity of the normal distribution.
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Figure 4: Solid 
urves 
orrespond to F0 = κ and dashed 
urves to the stationary 
ase, F0 ∼
π. Bonus threshold κ = 1.5 in all plots. Upper left: Conditional expe
ted bonus per
entage

(C = 1.5). Middle left: Expe
ted �rst bonus. Lower left: Expe
ted bonus in stationarity. Upper

right: Conditional expe
ted funding ratio given no bonus (C = 1.5). Middle right: Conditional

expe
ted funding ratio given no bonus in 40 years. Lower right: Expe
ted funding ratio in

stationarity.

Funding ratio

The pension payo� depends on the funding ratio when 
ontributions are 
ommitted, the bonuses

up to the time of payout, and the funding ratio at payout. Thus to evaluate the payo� we need

to 
onsider both the funding ratio at the time money enters the fund, and the funding ratio at
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the time money leaves the fund.

The expe
ted funding ratio as a fun
tion of the time sin
e the last bonus 
an be 
al
ulated

by Proposition 4.4. This is shown for the base 
ase fund in the upper right plot of Figure 4.

The expe
ted funding ratio is de
reasing in the time sin
e the last bonus. Intuitively, this seems

reasonable sin
e absen
e of a bonus indi
ates that the fund is experien
ing poor investment

results. It is perhaps surprising, however, that the (expe
ted) funding ratio seems to level

o�, at around 120%. Thus beyond a 
ertain point the funding ratio does not deteriorate any

further. Limiting distributions of Markov 
hains 
onditioned on non-absorption (or in our 
ase

no bonus) are known as Yaglom limits. We 
onje
ture that the fund possesses a Yaglom limit

both in stationarity and when started at the threshold, i.e. that the funding ratio distribution


onditioned on no bonus 
onverges to a non-degenerate distribution. However, establishing

existen
e, let alone identifying, Yaglom limits is non-trivial and a formal study is outside the

s
ope of this paper. The interested reader is referred to the spe
ialist literature on quasi-

stationarity, e.g. Tweedie (1974); Ja
ka and Roberts (1995); Lasserre and Pear
e (2001).

9

We know that high equity exposures lead to high, but infrequent, bonuses. It also leads to

low expe
ted funding ratios. The expe
ted funding ratio in stationarity,

Eπ(F ) = κPπ(T1 = 1) + E(F1|T1 = 1)Pπ(T1 > 1), (76)

is shown in the lower right plot of Figure 4, while the expe
ted funding ratio after 40 years with

no bonus is shown in the middle right plot. For low values of C both the un
onditional and


onditional expe
ted funding ratios are 
lose to the maximum of 1.5, while as C approa
hes the

upper limit for stationarity the (expe
ted) funding ratio tends to one.

We �nally note that it follows from Proposition 4.4 that the expe
ted funding ratio for funds

with the same C but di�erent thresholds are related by an a�ne transformation. Spe
i�
ally,

the expe
ted funding ratio in stationarity is related by

E(C,κ2)
π (F ) =

κ2 − 1

κ1 − 1

(
E(C,κ1)

π (F )− 1
)
+ 1. (77)

Higher bonus thresholds thereby lead to higher expe
ted funding ratios and hen
e lower guar-

antees.

5.2 Pension bene�ts

The rationale behind guaranteeing a �xed return on a part of the 
ontributions is that it ensures a


ertain minimum bene�t. However, guarantees redu
e the risk 
apa
ity for risky assets impairing

expe
ted returns. Expe
ted returns 
an be in
reased by leverage of the bonus potential, but

this in turn in
reases the variability. The (minimum) fra
tion guaranteed and the expe
ted

return/variability are 
ontrolled by κ and C, respe
tively.
In this se
tion we 
al
ulate the mean and varian
e of the payout 
onsidered in Se
tion 3

(repeated here for ease of referen
e),

OT =
FT

F0
erT

T∏

i=1

(
1 + rBi

)
. (78)

This is used to 
al
ulate the optimal C for a mean-varian
e 
riterion for given κ. We take the

perspe
tive of the �average� member and we therefore perform the optimization for a fund in

9

The partial result that the funding ratio given no bonus does not 
onverge to one 
an be obtained without too

mu
h e�ort. Loosely speaking, it follows sin
e the bonus waiting time has exponential moments, 
f. footnote 4,

and sin
e a bonus 
an only be attributed when the funding ratio is �
lose� to κ the year prior. Consequently,

the probability that the funding ratio is above a 
ertain level 
an be bounded away from zero at least along

a sub-sequen
e. Essentially the same 
onditions (exponential moments of time to absorption and in
reasing

absorption times from states far away) are used in Ferrari et al. (1995) to show the existen
e of a quasi-stationary

distribution for a 
ontinuous-time Markov 
hain on a dis
rete state spa
e. Also note Martinez et al. (1998) whi
h

studies quasi-stationarity of a Brownian motion 
onditioned to stay positive. In our setup this 
an be seen as the

limiting 
ase where bonuses are attributed 
ontinuously (∆ ≈ 0).
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stationarity. The analysis pro
eeds in two steps. First, we 
al
ulate the mean and varian
e

of OT for a fund starting at the threshold. Se
ond, based on these results we apply an exa
t

simulation algorithm to �nd the stationary mean and varian
e. The algorithm is 
onsiderably

simpler than existing algorithms and might be of independent interest.

Fund at bonus threshold

The �rst and se
ond order moment of OT (and thereby the varian
e) 
an be 
al
ulated by a

so-
alled last-exit de
omposition, see e.g. Meyn and Tweedie (2009) p. 178. Let U denote the

last time a bonus was given before and in
luding time T . Note that U is not a stopping time,

and that the de
omposition is not a 
onsequen
e of the Markov property. We have

Eκ(OT ) =Eκ(OT ; T1 > T ) +

T∑

j=1

Eκ(OT ;U = j)

=
erT

κ
eκ(T ) +

erT

κ

T∑

j=1



∑

σ∈Dj

c̃σ

j∏

i=1

(
τiEκ

(
1 + rBi

∣∣T1 = i
))σi


 eκ(T − j), (79)

where for σ ∈ Dj and n = 0, . . . , T ,

c̃σ =
(
∑j

i=1 σi)!∏j
i=1 σi!

, eκ(n) = Pκ(T1 > n)Eκ(Fn

∣∣T1 > n). (80)

The expression for Eκ(OT ;U = j) follows by 
onsidering the di�erent ways bonuses 
an be

attributed su
h that the last bonus falls at time j. The di�erent patterns of time between

bonuses are given by the permutations in Dj . For ea
h pattern the probability of it o

urring

and the asso
iated expe
ted bonus 
an be 
al
ulated by the Markov property, and this has to

be multiplied by the number of ways the �bonus waiting periods� 
an be arranged, given by

c̃σ. Finally, we multiply by the expe
ted funding ratio given that no bonuses are given for the

remaining period, given by eκ(T − j). The quantities appearing in expressions (79) and (80) 
an

be 
al
ulated by Propositions 4.2�4.4.

For the se
ond order moment we similarly �nd

Eκ(O
2
T ) =Eκ(O

2
T ; T1 > T ) +

T∑

j=1

Eκ(O
2
T ;U = j)

=
e2rT

κ2
sκ(T ) +

e2rT

κ2

T∑

j=1



∑

σ∈Dj

c̃σ

j∏

i=1

(
τiEκ

((
1 + rBi

)2 ∣∣T1 = i
))σi


 sκ(T − j), (81)

where c̃σ is given by (80) and for n = 0, . . . , T ,

sκ(n) = Pκ(T1 > n)Eκ(F
2
n

∣∣T1 > n). (82)

In order to 
al
ulate sκ(k) note that on the event (T1 > n)

F 2
n =

(
(κ− 1)e−Sn + 1

)2
= (κ− 1)2e−2Sn + 2(κ− 1)e−Sn + 1. (83)

Hen
e, we need to 
al
ulate 
onditional expe
tations of e−Sn
and e−2Sn

. The �rst of these is

given by (67) of Proposition 4.4. The latter 
an be 
al
ulated by the same formula upon repla
ing

the term E(e−Sn ;Sn > 0) with E(e−2Sn ;Sn > 0). To evaluate (81) we also need to 
al
ulate

the se
ond order moment of the bonus per
entage. Similarly to F 2
n the term (1 + rBi )2 
an be

expanded and expressed in terms of e−Si
and e−2Si

. The appropriate 
onditional expe
tations

of the latter quantities 
an be 
al
ulated by the formula (58) of Proposition 4.3. We omit the

details.
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Fund in stationarity

We are interested in 
al
ulating the stationary mean and varian
e of OT . From Propositions 4.2�

4.4 we know the time and size of the �rst bonus, moments of the initial funding ratio and

moments of the terminal funding ratio 
onditioned on no bonuses. Unfortunately, we need

the joint distribution of these quantities and this is not available in an analyti
ally tra
table

form. Instead we will apply a simulation algorithm based on samples from the joint stationary

distribution of (F0, T1, rBT1
, FT1∧T ). The idea is to split the period in two, the time up to the

�rst bonus (if it o

urs before time T ) and the time after the �rst bonus. Moments of OT 
an

be obtained by 
ombining samples for the period up to the �rst bonus with analyti
 results for

the period after the �rst bonus.

Samples from the joint distribution of (F0, T1, rBT1
, FT1∧T ) 
an be obtained in several ways.

Perhaps the most obvious is to simulate F0 from the stationarity funding ratio distribution.

Given F0 we 
an then simulate the evolution of the fund until the �rst bonus and re
ord the

time and size of the bonus. Ensor and Glynn (2000) give an algorithm whi
h 
an be used to

obtain exa
t samples of F0, and Preisel et al. (2010) give an alternative algorithm by whi
h F0 
an

be sampled to any desired level of a

ura
y. Both algorithms rely on the fa
t that the invariant

distribution of a one-sided random walk (the Y -
hain of Se
tion 4) equals the distribution of the

maximum of the asso
iated unrestri
ted random walk (the S-
hain of Se
tion 4).

We employ a di�erent idea based on the argument presented in Se
tion 4.2. In stationarity

the probability that at time 0 we are in a period between two bonuses of length k is proportional

to kτk. Further, given we are in a period of length k at time 0 it is equally likely that we are in

any of the k positions. This observation gives rise to a very simple algorithm for simulating in

stationarity: For a fund started at the threshold simulate the path up to the �rst bonus, say, at

time k. This happens with probability τk. Now, use this path to generate k samples by shifting

it n pla
es to the left for n = 0, . . . , k − 1. Repeat the algorithm to obtain more samples.

The algorithm generates partly dependent samples from the stationary distribution. However,

when used to estimate expe
tations with respe
t to the stationary distribution the dependen
e

does not pose a problem. For evaluating moments of OT in stationarity we propose the following

method. The method 
ombines the (exa
t) samples with the analyti
 results obtained previously

to obtain a 
onsistent estimate of Eπ(OT ). Estimates of se
ond, and higher, order moments of

OT are obtained by suitable modi�
ations of the GT -fun
tional.

Proposition 5.1. Let N be given. Starting at the bonus threshold simulate N paths until the

�rst bonus. Denote the funding ratio paths by (F
(i)
0 , . . . , F

(i)

T (i)
1 −1

) and the �rst bonus by r(i) for

i = 1, . . . , N . Let M =
∑N

i=1 T
(i)
1 . A 
onsistent estimate of Eπ(OT ) 
an be obtained by

Êπ(OT ) =
1

M

N∑

i=1

T (i)
1 −1∑

k=0

GT

(
F

(i)
k , T (i)

1 − k, r(i), F
(i)

T (i)
1 ∧(T+k)

)
, (84)

where

GT (F0, T1, rB , FT1∧T ) =
FT1∧T

F0
×
{
erT1(1 + rB)Eκ(OT−T1) for T1 ≤ T,

erT for T1 > T,
(85)

and O0 = 0 by 
onvention.

Note that the two 
ases in GT 
orrespond to whether or not the �rst bonus (in the shifted

path) o

urs before or after time T . Also note that a bonus o

urring before or at time T for

the k-shifted path is equivalent to T (i)
1 ≥ T + k, and in this 
ase the last argument of GT equals

κ.
Although Proposition 5.1 is presented as a method for estimating a spe
i�
 quantity the

same method 
an be used to estimate any stationary expe
tation. The estimator 
an also be

made unbiased by repla
ing M by its expe
tation, NEκ(T1). As a simple example, stationary
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probabilities for F0 
an be estimated unbiasedly by

P̂π(F0 ∈ A) =
1

NEκ(T1)

N∑

i=1

T (i)
1 −1∑

k=0

1A

(
F

(i)
k

)
(86)

for any event A.10

Mean-varian
e analysis

We are now in a position to do a mean-varian
e analysis of the payout OT with respe
t to

the strategy parameters κ and C. We assume a horizon of T = 40 years. This 
orresponds

approximately to the average time between when 
ontributions are made and bene�ts are paid

out in a pension fund with life-long memberships.

We �rst 
onsider a fund starting at the bonus threshold. Table 3 states the mean, the

minimum (guarantee) and the standard deviation of the payout for di�erent sets of (κ,C). In

all 
ases the mean equals 6. For the smallest value of κ the payout is guaranteed to be at least

2.656. To rea
h an expe
ted payout of 6 the bonus potential has to be leveraged substantially,

and this in turn leads to a large standard deviation. As κ in
reases the guarantee de
reases and

an expe
ted payout of 6 
an be a
hieved by investing the bonus potential less aggressively. This

redu
es the standard deviation at the pri
e of a larger downside risk (lower guarantee). In the

limit as κ tends to in�nity there is no guarantee and an expe
ted payout of 6 
an be a
hieved

with a standard deviation of 2.17 by investing 37 per
ent of total assets in sto
ks.

11

κ 1.25 1.5 2 3 5 10

C 2.705 1.259 0.782 0.570 0.468 0.413

mean 6 6 6 6 6 6

guarantee 2.656 2.213 1.660 1.107 0.664 0.332

std. dev. 3.662 2.603 2.356 2.256 2.214 2.191

Table 3: Mean, guarantee and standard deviation of O40 for a pension fund starting at the bonus

threshold. All sets of strategies (κ,C) imply a mean payout of 6.

Consider next a pension fund whi
h has �xed the bonus threshold at κ. This implies that

at least 1/κ of 
ontributions is guaranteed the risk free rate. The value of the threshold might

be stipulated by regulation to ensure a 
ertain minimum pension, or it might be de
ided by the

board of the pension fund based on so
ial e
onomi
 
onsiderations. In either 
ase, the fund needs

to determine an investment strategy C. One (
ommon) way to balan
e the desire for a high

payout against unwanted variability is by use of a mean-varian
e optimization 
riterion. Being

a 
olle
tive pension fund we want to optimize the fund for the bene�t of the average member,

i.e. in stationarity. Hen
e, we 
onsider the following stationary mean-varian
e problem for �xed

κ
sup
C

{Eπ(OT )− γVarπ(OT )} . (87)

In Figure 5 the optimization problem with γ = 0.07468 and T = 40 is illustrated for κ = 1.5 and
κ = 3. The value of γ is 
hosen su
h that 60 per
ent in sto
ks is optimal for a mean-varian
e

investor with no guarantee and a 
onstant proportion of total assets in sto
ks. We see from Fig-

ure 5 that neither the mean nor the standard deviation is monotone in C. The expe
ted payout

is de
reasing for C su�
iently large be
ause very aggressive strategies lead to low funding ratios

in stationarity. The fund with low guarantees (κ = 3) has an optimal C of about 80 per
ent,

10

Remark: Theorem 10.4.9 of Meyn and Tweedie (2009) together with Ka
's theorem yields the representation

result Pπ(F0 ∈ A) = Eκ(
∑T1−1

k=0
1A(Fk))/Eκ(T1). This result 
an also be obtained from (86) by taking expe
ta-

tion on both sides. Conversely, it follows from the representation that the right-hand side of (86) is an unbiased

estimator of Pπ(F0 ∈ A) as 
laimed.

11

For the optimal mean-varian
e investment strategy see Korn (1997) and Zhou and Li (2000).
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while the fund with high guarantees (κ = 1.5) has an optimal C of about 150 per
ent. The

equity exposure, at the threshold, as a fra
tion of total assets is about 50 per
ent for both 
ases.

The mean-varian
e 
riterion is normally applied in situations where more risk (higher C)
leads to higher expe
ted return and higher variability. It might be argued that the mean-

varian
e 
riterion is 
onsidered out of ne
essity to avoid degenerate solutions in these situations.

In stationarity, however, the expe
ted payout as a fun
tion of C is unimodal. We might therefore

alternatively de�ne the optimal investment strategy C∗
as the one maximizing the expe
ted

payout in stationarity. The optimal investment strategy C∗
thus de�ned is illustrated in Table 4

and Figure 5 upper left for di�erent values of κ. We see that C∗
is 
onsiderably higher than the

one obtained from the mean-varian
e 
riterion (for given κ). However, the asso
iated standard

deviation is also 
onsiderably higher implying than the payout will typi
ally deviate substantially

from its expe
tation.

κ 1 1.25 1.5 2 3 5 10

C∗
N/A 2.143 2.313 2.473 2.700 2.850 2.951

maximal mean 3.320 4.923 6.886 11.73 23.66 48.50 93.61

std. dev. 0 2.213 6.649 26.13 151.5 826.9 3540

Table 4: The optimal investment strategy, C∗
, maximizing the expe
tation of O40 in stationarity

for di�erent values of κ. The 
orresponding mean and standard deviation of O40 are also shown.

5.3 Con
luding remarks

In this se
tion we have studied a stylized 
olle
tive pension fund and presented an essentially


omplete analysis of its stationary properties. We have argued that optimizing the fund's station-

ary dynami
s is a way to ful�ll the otherwise vague obje
tive of �in the best interest of members�.

Of 
ourse, some (the board) must still de
ide on the 
olle
tive risk appetite. The analysis is

intri
ate and the model under study is kept simple of mathemati
al ne
essity. However, we

believe that the lessons learned have far-rea
hing real world 
onsequen
es.

The simplest and most important lesson is that there is a limit to how mu
h risk the fund


an take, and this limit 
an be surprisingly low (Proposition 4.1). When this limit is ex
eeded

the fund will over time lose its bonus potential. Although the spe
i�
 limit depends on the

model, this is a general result that applies to all investors with a nonrenewable risk budget. It

shows that 
are must be taken when introdu
ing volatility on the balan
e, and it also provides

a rationale for funds to buy tail prote
tion to 
urb losses.

The se
ond lesson of general appli
ability is that there is a genuine trade-o� between short-

term gains and long-term funding. In the long run too little investment risk leads to frequent,

small bonuses, while too mu
h investment risk leads to infrequent, large bonuses. Taken to the

extreme too little and too mu
h risk both lead to vanishing long-term bonuses and a balan
e

must therefore be stru
k, as illustrated in the lower two plots of Figure 4. This trade-o� exists

for all long-term investors trying to add value to a �xed liability from a limited amount of �free

money�. The key insight is that high expe
ted returns 
ome with the risk of big losses whi
h in

turn impair future risk taking.

The third lesson is that bonus �deserts� 
annot be prevented. Even if the fund is risk averse

there will be substantial variation in the time between bonuses, and this variability in
reases

with the investment risk, see Table 2 or Figure 3 lower right plot. The sheer magnitude of the

variability is perhaps the most surprising result of the paper. Bearing in mind that the analysis

is in some sense an idealized �best 
ase� we would expe
t that when the underlying assumptions

are violated the time between bonuses will be even wider.

The �nal lesson to be �learned� is the analysis methodology in itself. Stationarity is a math-

emati
al abstra
tion whi
h we use to represent the long-term going-
on
ern of a pension fund.
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Figure 5: Stationary mean and standard deviation of O40 as a fun
tion of the investment strategy

C. Solid 
urves 
orrespond to κ = 1.5 and dotted 
urves to κ = 3. Upper left: Expe
ted pension

payout. Upper right and lower left: Standard deviation of the pension payout (note the di�erent

s
ales). Lower right: Illustration of the mean-varian
e optimization problem (87).

Although stationarity in the stri
t probabilisti
 sense will never be a
hieved in pra
ti
e, we be-

lieve that 
olle
tive pension funds should be designed with the aim of perpetual operation, i.e.

with stationary dynami
s. The largest Danish pension fund, ATP, has su

essfully applied these

ideas in pra
ti
e for more than a de
ade when designing poli
ies for risk budgeting, hedging,

investment and indexation, as well as the pension produ
t itself.

The work 
an be extended in a number of dire
tions to make the model more realisti
.

A sto
hasti
 interest rate model would introdu
e interest rate sensitivity to the balan
e and

in�uen
e the dynami
s of the funding ratio pro
ess. In pra
ti
e, interest rate �u
tuations has

probably been the single most important fa
tor for the funding ratio of many pension funds

in re
ent years. It would also be of 
onsiderable interest to introdu
e a demographi
 model

and study the impa
t of the gradual aging of the population that follows from in
reased life

expe
tan
y.

In pra
ti
e pension funds, and investors in general, do not operate in perfe
t markets. Rather,

they fa
e a wide range of fri
tions in the form of e.g. regulatory requirements, leverage 
onstraints,

liquidity risk, di�erent rates for loans and deposits, 
urren
y risk, operational risk et
. Ea
h of

these e�e
ts are of interest in their own right, and it 
ould be relevant to in
lude these in the

analysis. However, non-hedgeable risks pre
lude the existen
e of a stationary solution and 
all

for an alternative obje
t of study. To stay in the spirit of the 
urrent work, one possibility would

be to demand a low probability of insolven
y on a given horizon and to study the dynami
s of

the fund 
onditioned on �survival�.

Another avenue of resear
h is the 
apital market model and the investment strategy. In
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parti
ular, it would be of interest to study 
apital markets with heavy-tailed returns and option

based investment strategies. The random walk results of Se
tion 2 are general results whi
h

apply to any funding ratio pro
ess of the form

Fn = min
{
(Fn−1 − 1)e−Xn + 1, κ

}
for n ∈ N0, (88)

where the Xn's are i.i.d. random variables. Note that Xn represents the joint e�e
t of the 
apital

market return and the investment strategy. In this paperXn follows a normal distribution, but in

prin
iple any distribution 
an be assumed. However, to apply the results we need the distribution

of Sn = X1 + . . . +Xn so in pra
ti
e only distributions with known 
onvolution properties 
an

be handled analyti
ally, e.g. Gamma or 
ompound Poisson distributions. Otherwise we have to

resort to numeri
al methods.

With fat-tailed returns or jumps in the market large losses 
an o

ur over short periods of

time, or even instantly. With no limits on the size of losses and if the fund does not have a

ess

to tail prote
tion, the fund 
an stay funded with 
ertainty only if it does not lever its bonus

potential. On the other hand, if tail prote
tion is available the fund 
an still use leverage, but

the exposure in ex
ess of the bonus potential has to be prote
ted. In general, the risk of big

losses 
auses the fund to behave more 
autiously and 
onsequently it will fa
e lower expe
ted

returns in the long run.
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A Proofs

A.1 Entran
e times and partitions

Proof of Theorem 2.3. Rearranging (5) we get for 0 ≤ s < 1

1− exp

( ∞∑

n=1

(−1)
pn
n
sn

)
=

∞∑

n=1

τns
n. (89)

From Theorem 2.2 we get that

exp

( ∞∑

n=1

(−1)
pn
n
sn

)
= 1 +

∞∑

m=1

∑

σ∈Dm

sm

σ1!σ2! · · ·σm!

m∏

n=1

(
(−1)

pn
n

)σn

= 1 +

∞∑

m=1

∑

σ∈Dm

sgn(σ)

dσ
sm

m∏

n=1

pσn

n . (90)

Insert this in (89) to obtain

−
∞∑

m=1

∑

σ∈Dm

sgn(σ)

dσ
sm

m∏

n=1

pσn

n =

∞∑

n=1

τns
n. (91)

Finally, by inspe
tion of the left and the right hand side of the above equality we obtain (12).

Proof of Theorem 2.4. We need to prove two identities

∑

σ∈Dn

kσk

dσ
= 1, (92)

and

∑

σ∈Dn

1

dσ
= 1. (93)

We �rst note that (93) follows from (92) by summing over k. Using that

∑n
k=1 kσk = n for

σ ∈ Dn we get

n =
n∑

k=1

∑

σ∈Dn

kσk

dσ
=
∑

σ∈Dn

∑n
k=1 kσk

dσ
=
∑

σ∈Dn

n

dσ
, (94)

and dividing throughout by n yields (93).

We next prove (92) by indu
tion in n. For n = 1 the relation is trivially satis�ed. Assume

that (92) holds for n− 1 and all 1 ≤ k ≤ n− 1; then (93) also holds for n− 1 as just shown. To
prove that (92) holds for n and 1 ≤ k ≤ n there are three 
ases to 
onsider:

For k = n the only term in the sum di�erent from zero o

urs for σ = (0, . . . , 0, 1), and hen
e

∑

σ∈Dn

nσn∏n
i=1 σi! iσi

=
n

1!n
= 1. (95)

For 1 < k < n we use that there is a one-to-one mapping between permutations in Dn with

σk > 0 and permutations in Dn−1 with πk−1 > 0 de�ned by π = (σ1, . . . , σk−2, σk−1 + 1, σk −
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1, σk+1, . . . , σk−1). Noting that σk > 0 with k < n implies σn = 0 we have

∑

σ∈Dn

kσk∏n
i=1 σi! iσi

=
∑

σ∈Dn:σk>0

kσk∏n−1
i=1 σi! iσi

=
∑

π∈Dn−1:πk−1>0

k(πk + 1)
∏n−1

i=1 πi! iπi

πk−1!(k − 1)πk−1πk! k
πk

(πk−1 − 1)!(k − 1)πk−1−1(πk + 1)! kπk+1

=
∑

π∈Dn−1:πk−1>0

(k − 1)πk−1∏n−1
i=1 πi! iπi

= 1, (96)

where the last equality follows by the indu
tion hypothesis.

For k = 1 the mapping π = (σ1 − 1, σ2, . . . , σn−1) is one-to-one between permutations in Dn

with σ1 > 0 and all permutations in Dn−1. We then have

∑

σ∈Dn

σ1∏n
i=1 σi! iσi

=
∑

π∈Dn−1

π1 + 1
∏n−1

i=1 πi! iπi

π1!

(π1 + 1)!
=

∑

π∈Dn−1

1
∏n−1

i=1 πi! iπi

= 1, (97)

where the last equality follows from (93) whi
h holds for n− 1 by the indu
tion hypothesis.

A.2 Entran
e time moments

Proof of Theorem 2.5. Let G1 = H ′
, where H is de�ned in (6), and de�ne re
ursively

Gn = H ′Gn−1 +G′
n−1 (n ≥ 2). (98)

We �rst establish the relation

τ (n) = −eHGn (n ≥ 1). (99)

Clearly, the relation holds for n = 1. Assuming (99) holds for n− 1 we have by (98)

τ (n) =
(
−eHGn−1

)′

= −eH
(
H ′Gn−1 +G′

n−1

)

= −eHGn, (100)

and hen
e (99) holds for all n by indu
tion.

Having established (99) we now need to prove

Gn =
∑

σ∈Dn

cσHσ (n ≥ 1). (101)

As before we will prove this by indu
tion. For n = 1 the equation reads G1 = H ′
whi
h is true

by de�nition. Assume (101) holds for n− 1. By (98) and the indu
tion hypothesis we have

Gn =
∑

σ∈Dn−1

cσH
′Hσ +

∑

σ∈Dn−1

cσ(Hσ)
′, (102)

where for σ = (σ1, . . . , σn−1) ∈ Dn−1

(Hσ)
′ = σ1H

σ1−1
1 Hσ2

2

n−1∏

i=2

Hσi

i +Hσ1
1

(
n−1∏

i=2

Hσi

i

)′

= . . .

=
n−1∑

k=1

σkH
σk−1
k Hk+1

∏

i6=k

Hσi

i . (103)
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Thus

Gn =
∑

σ∈Dn−1

cσH
′Hσ +

∑

σ∈Dn−1

n−1∑

k=1

cσσkH
σk−1
k Hk+1

∏

i6=k

Hσi

i . (104)

Let σ∗ = (σ∗
1 , . . . , σ

∗
n) ∈ Dn be �xed, but arbitrary. We will identify the terms in (104) whi
h


ontain the fa
tor Hσ∗

and show that the 
oe�
ients add up to cσ∗
. There are three 
ases (note

that in the �rst two 
ases the 
ondition implies that σ∗
n = 0):

1. σ∗
1 > 0: Then H ′Hσ = Hσ∗

with σ = (σ∗
1 − 1, σ∗

2 , . . . , σ
∗
n−1) ∈ Dn−1. The �rst sum in

(104) 
ontains a term with this fa
tor and 
oe�
ient cσ.

2. σ∗
j > 0 for some 2 ≤ j ≤ n−1: Then Hσk−1

k Hk+1

∏
i6=k H

σi

i = Hσ∗

with σ = (σ∗
1 , . . . , σ

∗
j−2,

σ∗
j−1 +1, σ∗

j − 1, σ∗
j+1, . . . , σ

∗
n−1) ∈ Dn−1 and k = j − 1. The se
ond sum in (104) 
ontains

a term with this fa
tor and 
oe�
ient cσ(σ
∗
j−1 + 1).

3. σ∗
n > 0: In this 
ase σ∗ = (0, . . . , 0, 1) and hen
e Hσ∗

= Hn = Hσk−1
k Hk+1

∏
i6=k H

σi

i for

σ = (0, . . . , 0, 1) ∈ Dn−1 and k = n− 1. This term is in
luded in the se
ond sum of (104)

with 
oe�
ient cσ.

Hen
e, for ea
h positive 
omponent of σ∗
there exists a term in (104) 
ontaining the fa
tor

Hσ∗

. Conversely, every term in (104) 
orresponds to a σ∗ ∈ Dn and is of the form 
overed in

one of the three 
ases above. Hen
e, we have

Gn =
∑

σ∗∈Dn

Hσ∗
∑

1≤j≤n:σ∗

j
>0

(σ∗
j−1 + 1)cσ(j) (105)

where σ(j) = (σ∗
1 , . . . , σ

∗
j−2, σ

∗
j−1 + 1, σ∗

j − 1, σ∗
j+1, . . . , σ

∗
n−1) ∈ Dn−1 and we, for notational


onvenien
e, de�ne σ∗
0 ≡ 0. Using (10) we 
an write the inner sum in (105) as

∑

1≤j≤n:σ∗

j
>0

(σ∗
j−1 + 1)cσ(j)

=
∑

1≤j≤n:σ∗

j
>0

(σ∗
j−1 + 1)

(n− 1)!
∏n−1

i=1 σ
(j)
i !(i!)σ

(j)
i

=
1∏n

i=1 σ
∗
i !(i!)

σ∗

i

∑

1≤j≤n:σ∗

j
>0

(σ∗
j−1 + 1)(n− 1)!

∏n
i=1 σ

∗
i !(i!)

σ∗

i

∏n−1
i=1 σ

(j)
i !(i!)σ

(j)
i

=
1∏n

i=1 σ
∗
i !(i!)

σ∗

i

∑

1≤j≤n:σ∗

j
>0

(σ∗
j−1 + 1)(n− 1)!

σ∗
j j!

(σ∗
j−1 + 1)(j − 1)!

=
1∏n

i=1 σ
∗
i !(i!)

σ∗

i

(n− 1)!
∑

1≤j≤n:σ∗

j
>0

σ∗
j j

=
n!∏n

i=1 σ
∗
i !(i!)

σ∗

i

= cσ∗ , (106)

where the penultimate equality uses that

∑
1≤j≤n:σ∗

j
>0 σ

∗
j j = n sin
e σ∗ ∈ Dn. This shows that

(101) holds and we are �nished.

Before proving Theorem 2.6 we need to state the following two lemmas:

Lemma A.1. For n ≥ 1, (a1, . . . , an) ∈ Cn
and b ∈ C

∑

σ∈Dn

n∏

i=1

(
ai −

bi

i

)σi 1

σi!
=
∑

σ∈Dn

n∏

i=1

aσi

i

σi!
− b

∑

σ∈Dn−1

n−1∏

i=1

aσi

i

σi!
, (107)

where the last sum is 1 by de�nition for n = 1.
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Proof. We �rst note that the left-hand side of (107) 
an be written

∑

σ∈Dn

n∏

i=1

aσi

i

σi!
− b

∑

σ∈Dn

σ1
aσ1−1
1

σ1!

n∏

i=2

aσi

i

σi!
+ . . . , (108)

where . . . denotes higher order terms of b. Sin
e there is only a 
ontribution to the �rst order

term if σ1 > 0, and sin
e σ ∈ Dn with σ1 > 0 if and only if (σ1 − 1, σ2, . . . , σn−1) ∈ Dn−1, we

have that the �rst order term is given by

b
∑

σ∈Dn:σ1>0

σ1
aσ1−1
1

σ1!

n∏

i=2

aσi

i

σi!
= b

∑

σ∈Dn−1

n−1∏

i=1

aσi

i

σi!
. (109)

Hen
e we are �nished if we show that all higher order terms in (108) vanish.

For m ≥ 2, the m'th order terms are of the form

n∏

i=1

aηi

i

(−bi

i

)νi 1

(ηi + νi)!

(
ηi + νi

νi

)
=

sgn(ν)

dν
bm

n∏

i=1

aηi

i

ηi!
, (110)

where ν ∈ Dm and η ∈ Dn−m, with the 
onvention that νj = 0 for j > m and, similarly, ηj = 0
for j > n−m (for m = n, ηj = 0 for all j). The higher order terms in (108) 
an then be written

n∑

m=2

bm
∑

η∈Dn−m

n∏

i=1

aηi

i

ηi!

∑

ν∈Dm

sgn(ν)

dν
= 0, (111)

sin
e the inner sum is zero for m ≥ 2 by equation (13).

We also need the following 
ombination of Krone
ker's lemma, see e.g. Theorem 2.5.5 of

Durrett (2010), and Frobenius' theorem, see e.g. Chapter 7 of Duren (2012).

Lemma A.2. If

∑∞
k=1 ak 
onverges to a �nite limit then

f(s) = (1− s)

∞∑

k=1

skkak (112)


onverges for |s| < 1 and f(s) → 0 as s → 1−.

Proof. Let bk = k and xk = kak. Then bk ↑ ∞ and, by assumption,

∑∞
k=1 xk/bk =

∑∞
k=1 ak


onverges. By Krone
ker's lemma this implies that

1

bn

n∑

k=1

xk =
1

n

n∑

k=1

kak → 0 as n → ∞. (113)

Next, let a0 = 0 and ck = kak − (k − 1)ak−1 for k ≥ 1. Summation by parts yields

f(s) = (1− s)

∞∑

k=1

skkak =

∞∑

k=1

sk(kak − (k − 1)ak−1) =

∞∑

k=1

skck, (114)

where the series

∑∞
k=1 ck is Cesàro summable to zero by (113), i.e. the average of the partial sums,∑k

m=1 cm = kak, 
onverges to zero. By Frobenius' theorem we 
on
lude that f(s) 
onverges for
|s| < 1 and f(s) → 0 as s → 1−.

With those two lemmas available we are now ready to prove Theorem 2.6.
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Proof of Theorem 2.6. By Theorem 2.5 we have for |s| < 1

τ (n)(s) = −eH(s)
∑

σ∈Dn

cσHσ(s), (115)

where H(s) = −∑∞
k=1

sk

k P (Sk ≤ 0) and

Hσ(s) =

n∏

i=1

(
−

∞∑

k=i

(k)i
k

sk−iP (Sk ≤ 0)

)σi

. (116)

Using that log(1 − s) = −
∑∞

k=1 s
k/k, and hen
e (i− 1)!/(1− s)i =

∑∞
k=i s

k−i(k)i/k, we get

eH(s) = exp

( ∞∑

k=1

sk

k
(1− P (Sk ≤ 0))−

∞∑

k=1

sk

k

)

= exp

( ∞∑

k=1

sk

k
P (Sk > 0)

)
(1− s), (117)

and

cσHσ(s) = n!

n∏

i=1

( ∞∑

k=i

(k)i
k

sk−i(1 − P (Sk ≤ 0))−
∞∑

k=i

(k)i
k

sk−i

)σi

1

σi!(i!)σi

= n!

n∏

i=1

( ∞∑

k=i

(k)i
k

sk−iP (Sk > 0)− (i− 1)!

(1 − s)i

)σi

1

σi!(i!)σi

= n!

n∏

i=1

(
ai −

bi

i

)σi 1

σi!
, (118)

where ai =
∑∞

k=i
(k)i
k sk−iP (Sk > 0)/i! and b = 1/(1− s). By Lemma A.1 we then have

∑

σ∈Dn

cσHσ(s)/n! =
∑

σ∈Dn

n∏

i=1

aσi

i

σi!
− b

∑

σ∈Dn−1

n−1∏

i=1

aσi

i

σi!
. (119)

Theorem 2.5 in a 
ombination with (117) and (119) yields

τ (n)(s) = exp

( ∞∑

k=1

sk

k
P (Sk > 0)

)
∑

σ∈Dn−1

ncσ

n−1∏

i=1

( ∞∑

k=i

(k)i
k

sk−iP (Sk > 0)

)σi

− exp

( ∞∑

k=1

sk

k
P (Sk > 0)

)
∑

σ∈Dn

(1− s)cσ

n∏

i=1

( ∞∑

k=i

(k)i
k

sk−iP (Sk > 0)

)σi

. (120)

By assumption

∑∞
k=1 k

n−2P (Sk > 0) < ∞, and by dominated 
onvergen
e, all series of order

at most n− 2 thereby 
onverge to �nite limits as s tends to 1−. In a 
ombination with Lemma

A.2 we also have

lim
s→1−

(1− s)

∞∑

k=n

(k)n
k

sk−nP (Sk > 0) = 0, (121)

and we 
on
lude

E((τ−)n) = lim
s→1−

τ (n)(s) = exp

( ∞∑

k=1

1

k
P (Sk > 0)

)
n!

∑

σ∈Dn−1

n−1∏

i=1

(
hi

i!

)σi 1

σi!
< ∞. (122)
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A.3 Conditional 
hara
teristi
 fun
tions

Proof of Theorem 2.8. De�ne the (partial) 
hara
teristi
 fun
tions

γn(ζ) = E
(
eiζSn ; τ− = n

)
, (123)

in terms of whi
h χ 
an be written as

χ(s, ζ) =

∞∑

n=1

snγn(ζ). (124)

Rearranging (26) we get

1− exp

(
−

∞∑

n=1

sn

n
gn

)
=

∞∑

n=1

snγn(ζ), (125)

where we have de�ned gn = E
(
eiζSn ;Sn ≤ 0

)
. From Theorem 2.2 we get that

exp

( ∞∑

n=1

(−1)
gn
n
sn

)
= 1 +

∞∑

m=1

∑

σ∈Dm

sm

σ1!σ2! · · ·σm!

m∏

n=1

(
(−1)

gn
n

)σn

= 1 +

∞∑

m=1

∑

σ∈Dm

sgn(σ)

dσ
sm

m∏

n=1

gσn

n . (126)

Insert this in (125) to obtain

−
∞∑

m=1

∑

σ∈Dm

sgn(σ)

dσ
sm

m∏

n=1

gσn

n =
∞∑

n=1

snγn(ζ). (127)

By inspe
tion of the left and the right hand side of the equality above we obtain

γn(ζ) = −
∑

σ∈Dn

sgn(σ)

dσ

n∏

k=1

(
E
(
eiζSk ;Sk ≤ 0

))σk
. (128)

Finally, divide by τn to obtain (27).

Proof of Theorem 2.9. For �xed ζ and n we have the following �rst-entran
e de
omposition

E(eiζSn) =

n∑

k=1

E(eiζSn ; τ− = k) + E(eiζSn ; τ− > n)

=

n∑

k=1

E(eiζSk ; τ− = k)E(eiζSn−k) + E(eiζSn ; τ− > n), (129)

where the se
ond equality follows from the Markov property and the random walk stru
ture.

For ease of notation we let ek = E(eiζSk). In this notation, the de
omposition above 
an be

written

E(eiζSn ; τ− > n) = en −
n∑

k=1

E(eiζSk ; τ− = k)en−k. (130)

Multiplying both sides of (130) by e1 yields the relation

E(eiζSn ; τ− > n)e1 = en+1 −
n∑

k=1

E(eiζSk ; τ− = k)en+1−k

= E(eiζSn+1 ; τ− > n+ 1) + E(eiζSn+1 ; τ− = n+ 1), (131)
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where we have used that for all k, eke1 = ek+1.

We are now ready to prove (28) by indu
tion in n. Sin
e the events (τ− > 1) and (S1 > 0)
are identi
al equation (28) holds for n = 1. Next, assume that (28) holds for n. Let e+k =
E(eiζSk ;Sk > 0) and note that E(eiζSk ;Sk ≤ 0) = ek − e+k . From Theorem 2.8 we have

E(eiζSn+1 ; τ− = n+ 1) = −
∑

σ∈Dn+1

n+1∏

k=1

(
e+k − ek

k

)σk
1

σk!
. (132)

Using that ek = ek1 we get from (131), the indu
tion hypothesis and (132) that

E(eiζSn+1 ; τ− > n+ 1) = e1
∑

σ∈Dn

n∏

k=1

(
e+k
k

)σk
1

σk!
+

∑

σ∈Dn+1

n+1∏

k=1

(
e+k − ek1

k

)σk
1

σk!

=
∑

σ∈Dn+1

n+1∏

k=1

(
e+k
k

)σk
1

σk!
, (133)

where the se
ond equality uses Lemma A.1 with ak = e+k /k and b = e1. This shows that (28)
holds for n+ 1 and we are �nished.
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