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Abstract

We present a new type of with-profits annuities which offer lifelong, yet hedge-
able, guarantees. The rolling annuity gives a minimum lifelong guarantee at the
time of contribution complemented with a series of guaranteed increases prior to
retirement. Importantly, the initial guarantee and the subsequent increases are all
set at prevailing market rates and hence are not known in advance. The structure
of the guarantee implies that, prior to the last increase, the liability is equivalent
to a zero-coupon bond maturing at the next increase and can therefore easily be
hedged in the financial markets. Furthermore, the short duration implies that the
financial and regulatory value will (essentially) coincide. We show financial fair-
ness and we derive the reserve and thereby the hedging strategy. We also consider
longevity risk, the duration profile, and report on a simulation study of the real
value of the final payout.
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1 Introduction

Traditionally, life annuities come in two flavors. In a defined benefit (DB) scheme the
retiree receives an inflation indexed benefit depending on number of years of service and
wage while working. In a with-profits pension scheme the retiree receives a guaranteed
minimum pension with the possibility of receiving additional benefits if the funding
status of the fund allows. Both systems are designed to provide financial security in
retirement by guaranteeing the beneficiary lifelong payments at or above a certain level.

However, a combination of faltering financial markets, increased life expectancy
and, in some cases, generous promises have put the traditional systems under increas-
ing pressure. It is now apparent that assumptions, once believed to be conservative,
were in fact overly optimistic and that many of the original schemes are not sustainable.
Moreover, the long-lasting fall in interest rates has increased the market value of guar-
anteed liabilities dramatically and put further pressure on life and pension insurance
companies operating under market-value accounting standards, e.g. in the Netherlands,
cf. OECD (2013).

In response to these challenges there has been a massive shift from DB schemes
to defined contribution (DC) schemes with no guantees, see e.g. Chapter 1 of Ang
(2014). Also, the terms of with-profits contracts are being rewritten and unconditional
guarantees are made conditional. In both cases the result is the same: financial and
insurance risks once borne collectively, or by a sponsor, are being transferred to the
individual member. The new products are in essence individual savings vehicles with no
risk sharing among members. Typically the new schemes offer greater transparency and
flexibility than the old schemes. However, these appealing features notwithstanding,
the new products do not fulfill the fundamental purpose of the products they replace:
a guaranteed retirement income.

In this paper we present a new type of with-profits annuity: the rolling annuity.
Similar to the traditional with-profits annuity, the rolling annuity is based on lifelong
guarantees and (collective) risk sharing of biometric risks. However, unlike the tradi-
tional with-profits annuity, the financial guarantees of the rolling annuity do not rely
on conservative assumptions on future market returns. Rather, the financial guarantees
of the rolling annuity can be replicated in the financial markets, i.e. the guarantees are
hedgeable. The rolling annuity thus combines the main virtue of traditional annuities
(lifelong guarantees) with the main virtue of current products (hedgeability).

With-profits (or participating) annuities are common in collective pension plans in e.g.
Germany and the Nordic countries, cf. Maurer et al. (2013); Rocha et al. (2011). In the
traditional with-profits annuity the guaranteed benefits are calculated using conserva-
tive assumptions on both mortality and investment returns (the technical interest rate).
Premiums are invested in the capital markets and over time assets will accumulate in
the plan. If mortality assumptions and the technical rate were indeed conservative the
accumulated returns from investments will produce a surplus. Over time this surplus
is returned to the members in the form of indexation, i.e. by the discretionary decision
of the pension plan management to increase member benefits.

The role of the technical rate is to provide stable benefit payments by smoothing
investment returns over time between members of the plan. A few years of bad in-
vestment returns do not translate into immediate benefit cuts but are absorbed by the
fund and shared between generations. When markets recover returns will again stabi-
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lize, assets will appreciate, and indexation will resume. This all works well under the
assumption that investment returns in the long run exceeds the technical rate.

However, two decades of falling interest rates has challenged established views on
long-term returns and raised concerns about the sustainability of many pension plans.
The problems are aggravated by the fact that under the terms of the traditional with-
profits contract the technical rate is effective during the entire contract period. Thus,
even though technical rates have decreased over the years, many old contracts with
technical rates substantially above current market rates are still in effect.

The proposed rolling annuity also guarantees lifelong benefits, but on different
terms. In the accumulation phase returns are guaranteed for a limited period only,
e.g. 15 years, after which returns are guaranteed for another limited period and so
on. The last period covers the entire payout phase. The guarantees are lifelong in the
sense that guaranteed returns cannot be revoked, i.e. the guaranteed pension can only
increase over time. However, prior to retirement the guaranteed return for the next
period is not known in advance. To ensure hedgeability return guarantees are adapted
to reflect market rates at the time of issuance. In essence, the rolling annuity replaces
the technical rate with a (fair) market rate over successive periods.

The annual benefit guaranteed by the rolling annuity is based on a best estimate
life expectancy, i.e. a life expectancy with no safety margin. Thus, in contrast to the
traditional with-profits contract, mortality assumptions and return guarantees are both
set at (a priori) realistic, rather than conservative, levels. The lifelong guarantee entails
market and longevity risk which must be covered by risk capital provided by the pension
plan. In this paper we develop the rolling annuity in the context of a collective pension
fund, and we assume that the risk capital is provided by the members themselves by
deductions from their contributions. Over time the deducted contributions are returned
to the members in the form of indexation; this aspect is similar to the profit sharing
mechanism of the with-profits contract.

The forthcoming Solvency 2 regulatory framework in the European Union requires
tight risk management of life and pension insurance companies to ensure that issued
guarantees are honored.The framework is devised by the European Insurance and Oc-
cupational Pensions Authority (EIOPA) with the aim of protecting policyholders and
supporting the stability of the financial system.

A central part of the regulation concerns the construction of the discount curve
used to value pension liabilities. At the heart of the construction lies a “risk free”
interest rates term structure which extrapolates market data by assuming convergence
to a so-called ultimate forward rate (UFR) determined by EIOPA. The UFR is set to
4.2% to reflect long-term assumptions about growth and inflation.1

Convergence to an UFR and other intricacies of the Solvency 2 curve imply that
it is ill-suited for hedging purposes. Specifically, the discounted value of a long-dated
liability does not correspond to the value of a financial hedge, i.e. the true risk free
price. In fairness, this is only partly a problem of Solvency 2. Liability cash flows
extending beyond the horizon of the longest trading assets cannot be fully hedged in
the markets, and hence cannot be assigned a unique risk free price. Thus, even using
extrapolation schemes better suited for valuation and approximate hedging purposes,

1EIOPA has recently announced a review of the methodology used to derive the UFR. Since the
UFR is currently considerably higher than long-dated market rates, a review is likely to result in a
downward adjustment.
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some non-marketed residual risk will remain. In this perspective, the valuation discus-
sion is merely a symptom of the non-hedgeability of traditional pension guarantees.

The guarantees of the rolling annuity are hedgeable by construction. As we show
later on, in the accumulation phase the guarantees can be replicated by a sequence
of zero-coupon bonds expiring at the end of the period for which the different return
guarantees are in effect. Approaching retirement, the return guarantees are extended
to the payout phase and at this stage a small fraction of the total guarantees will in fact
be long-dated. However, for all practical purposes hedging requires trading in liquid,
short duration bonds only, hence the title of the paper. Consequently, the Solvency 2
value and the market value will effectively coincide for a rolling annuity.

Rolling annuities have been implemented at the nationwide Danish pension scheme
ATP. From 1 January 2015 members acquire (rolling annuity) guarantees for 80 pct. of
their contributions, while the rest enters collectively owned free funds. The free funds
provide the necessary capital to cover longevity risk of the guarantees and market
risks of a large return seeking portfolio. Over time, the free funds are returned to the
members in the form of indexation.

Rolling annuity guarantees are intended to form part of a with-profits contract,
and the implementation at ATP represents one possibly product. Many other profit-
sharing mechanisms and other sources for providing risk capital (if relevant) are of
course possible. However, to convey the general idea we focus in this paper on the
guarantees themselves, rather than on specific implementation choices.

Academic interest in life insurance contracts has primarily focused on pricing and hedg-
ing the embedded options under various capital market models. In particular, variable
annuities with guaranteed minimum withdrawal benefit (GMWB) riders, participating
policies with minimum interest rate guarantees and guaranteed annuity options have
attracted attention, see e.g. Bacinello et al. (2014); Ng and Li (2013); Hyndman and
Wenger (2014); Zaglauer and Bauer (2008); Grosen and Jørgensen (2000); Biffis and
Millossovich (2006) and references therein.

Although we also consider valuation and hedging, the main contribution of the
present paper is the annuity design itself. In this respect the paper is closer in spirit
to the (smaller) literature on designing annuities with desirable properties. Properties
previously considered in the literature include smooth benefit streams, inflation pro-
tection and mitigation of longevity risk, see e.g. Bruhn and Steffensen (2013); Guillén
et al. (2006); Tiong (2013); Denuit et al. (2011); Richter and Weber (2011). To the
knowledge of the authors, the specific goal of long guarantees hedgeable in shorter dated
instruments is new.

We assume throughout that both prices and reserves are calculated on continuously
updated best estimate mortality assumptions. No explicit price is charged to cover
longevity risk, but at ATP this is in practice paid for by (part of) the 20 pct. deduc-
tion in contributions. This construction is only possible in a collective pension scheme
which allows intergenerational risk sharing. For discussions on pros and cons of collec-
tive schemes, including intergenerational fairness issues, we refer the interested reader
to Binsbergen et al. (2014); Gabay and Grasselli (2012); Kryger (2011, 2010). We fi-
nally remark that longevity risk could have been mitigated differently, e.g. by applying
the group self-annuitization scheme of Piggot et al. (2005), see also Donnelly (2015).
However, these adaptive schemes do not conform with our aim of offering guaranteed
benefits, but they could well be of interest in other situations.
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The rest of paper is organized as follows. After establishing notation in Section 2, the
rolling annuity is developed in Section 3. This is the main section where we consider
pricing, fairness, reserving and computational aspects. This is followed by Section 4
on longevity risk as quantified by the Solvency 2 stress, and Section 5 on the interest
rate sensitivity (or duration) of the reserve. In Section 6 we report on a simulation
study investigating the performance and risk profile of the rolling annuity in real terms.
Finally, Section 7 concludes.

2 Preliminaries

We implicitly assume that the guarantees are issued by a pension fund or a life and pen-
sion insurance company which provides capital to cover risks associated with longevity
and hedging. We further assume that the fund or company operates under fair value
accounting standards.

As mentioned in the Introduction, the regulatory value under Solvency 2 of long-
dated pension liabilities generally do not coincide with their financial value. However,
the short duration of rolling annuities implies that the regulatory and financial value
are typically close. For this reason, we calculate the reserve under the assumption that
it equals the financial value of the guarantees.

The paper describes a mathematically idealized version of guarantees actually is-
sued. For notational convenience we make the benign assumptions that benefit streams
are continuous rather than in monthly installments, and that mortality is unisex rather
than gender-specific. We also neglect a number of more substantial real world issues,
e.g. costs, tax, multiple interest rate markets, and liquidity. These issues are of practical
importance but outside the scope of the current presentation.

2.1 Notation

We assume the existence of a frictionless, default-free fixed income market, and we
denote by pt(T ) the time t price of a zero-coupon bond (also known as a discount
bond) delivering for certain one monetary unit at maturity T ≥ t. We further assume
that the price can be expressed as

pt(T ) = EQ
[
e−

∫ T
t rsds

∣∣Ft

]
, (1)

where EQ denotes expectation with respect to the so-called risk-neutral measure, see
e.g. Bjrk (2009), rs is the instantaneous risk-free rate at time s, and Ft is the σ-field
generated by the financial market up to time t.

To meet its obligations the fund must set aside a reserve based on prevailing market
rates and a best estimate of the (future) force of mortality of its members. We denote
by µt,b(s) the time t best estimate of the force of mortality at time s for a person born
at time b ≤ s. The notation reflects the fact that the estimate changes over time. In
particular, the time t estimate of the probability that a person born at time b and alive
at time u (≥ b) survives to time T ≥ u is given by

St,b(T |u) = e−
∫ T
u µt,b(s)ds. (2)
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Similarly, the time t estimate of the expected number of years a person born at time b
and alive at time u lives after time T ≥ u is given by

et,b(T |u) =
∫ ∞

T
St,b(w|u)dw =

∫ ∞

T
e−

∫ w
u µt,b(s)dsdw. (3)

Note that for all u ≤ T ≤ P we have the relation

et,b(P |u) = St,b(T |u)et,b(P |T ). (4)

3 The rolling annuity

The purpose of the rolling annuity is to provide lifelong guaranteed benefits hedgeable
in shorter dated securities. This is achieved by structuring the guarantee as a series of
shorter (return) guarantees. To illustrate the idea consider a person making a contribu-
tion 35 years prior to retirement. The benefit level initially guaranteed depends on the
expected number of years in retirement and the return which can be locked in for the
next 15 years, say. After 15 years the guaranteed benefit level is increased by a factor
corresponding to the return which can at that time be locked in for an additional 15
years. After 30 years the guaranteed benefit level is increased for the last time. This
time the increase factors in the returns which can be locked in over the (expected)
payout phase.

The initial guarantee is based on a best estimate of the expected number of years
in retirement. The initial life expectancy assumption is guaranteed in the sense that
the subsequent benefit increases do not depend on the future life expectancy evolution.
Hence, the “risk” of life expectancy improvements in excess of those initially assumed
is borne by the pension provider.

Rolling annuity guarantees are intended to exist alongside a return-seeking portfolio
for two reasons. First, from a return perspective it is important to hold a well-diversified
portfolio with broad exposure to market factors. The guarantees provide security but
are exposed only to interest rate markets. Hence guarantees should be complemented
with exposure to e.g. stocks, credit, commodities and inflation. Second, rolling annuity
guarantees entail both longevity risk and hedging risk (although limited) and hence the
guarantees can in general apply to only part of the contribution.

3.1 Tariff and guaranteed increases

For the purpose of this presentation, we consider a person born at time b with time of
retirement P .2 The (guarantee) contribution paid at time t (< P ) is denoted by gt. As
the notation indicates, this is the contribution to which the guarantee pertains. The
guaranteed minimum level of pension at time u associated with a contribution paid
at time t is denoted by zt(u), for u ≥ t. The pension consists of a continuous benefit
stream of rate z from time of retirement to death. Since we measure time in years, z
corresponds to the amount received per year. Finally, we denote by L the length of the
period between successive guaranteed increases.

As an example illustrating the notation assume that L = 15 years, and consider a
contribution paid at t0 = P −35, i.e. 35 years prior to retirement. The initial guarantee

2In practice, the age at which you are entitled to receive pension might change over time. We ignore
this complication in the present exposition.
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is based on the price of a zero-coupon bond with maturity 15 years, and the expected
number of years in retirement. After 15 years the guarantee is increased by the return
which can be obtained for certain over the coming 15 years. At the end of the second
period, i.e. 5 years before retirement, the guarantee is increased by the return which
can be obtained over the payout phase. If we let t1 = t0 + 15 and t2 = t0 + 30, the
guaranteed minimum level of pension associated with the contribution paid at t0 is
given by

zt0(u) =


Z0 for t0 ≤ u < t1,

Z15 for t1 ≤ u < t2,

Z30 for t2 ≤ u,

where

Z0 =
gt0

pt0(t1)et0,b(P |t0)
, Z15 =

Z0

pt1(t2)
, Z30 = Z15

et2,b(P |t2)∫∞
P pt2(w)St2,b(w|t2)dw

.

Note that the increment factor used in Z30 can be interpreted as a weighted aver-
age of the returns which can be locked in over the payout phase, since et2,b(P |t2) =∫∞
P St2,b(w|t2)dw. From a theoretical point of view it could be argued that we should
use the original mortality assumptions, given by et0,b and St0,b. However, from a prac-
tical point of view it is preferable to use the future best estimates, given by et2,b and
St2,b, since this allows us to work with only one set of assumptions at any given instant
in time.3

The increment factors used to obtain Z15 and Z30 are known only after 15 and 30
years, respectively. From a financial point of view and disregarding longevity risk, the
guarantee corresponds to a so-called floater with a reset frequency of 15 years in the
accumulation phase.

In order to state the general expression for the guarantee we need some additional
notation. Denote by It the set consisting of t and the time points at which the guarantee
associated with a contribution paid at time t is subsequently increased (if any), i.e.
It = {t+ iL : i = 0, 1, 2, . . .}∩ [t, P ). Further, let It(u) = It ∩ [t, u]. Using this notation
the minimum guarantee at time u associated with a contribution paid at time t is given
by

zt(u) =
gt

et,b(P |t)
∏

τ∈It(u)

ξ−1
τ for u ≥ t, (5)

where

ξτ =

{
pτ (τ + L) for τ < P − L,∫∞
P pτ (w)Sτ,b(w|τ)dw/eτ,b(P |τ) for P − L ≤ τ < P.

(6)

We can interpret (5) as follows. First, the (guarantee) contribution is divided according
to the length of the payout phase, i.e. the expected number of years in retirement. This

3Note that the increment factor used in Z30 is generally increasing in life expectancy, since the longer
dated returns are then assigned a larger weight relative to the shorter dated returns. This implies that
if life expectancy evolves faster than expected, such that et2,b(P |t2) > et0,b(P |t2), then the guaranteed
pension will generally be larger than it would have been under the original assumptions.
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is the affordable level in the absence of returns. Second, the guarantee is increased
with the returns that can be obtained for certain over successive periods. In total the
periods cover the entire period from the time of contribution to the last benefit.4

It follows from (5) that the initialminimum guarantee associated with a contribution
paid at time t < P is given by

zt(t) =
gt

pt(t+ L)et,b(P |t)
for t < P − L, (7)

and

zt(t) =
gt∫∞

P pt(w)St,b(w|t)dw
for P − L ≤ t < P. (8)

In the first case there will be one or more guaranteed increases before retirement, while
in the second case the guaranteed level is fixed.

3.2 Pension credits

Due to the structure of the guarantee it is at first glance necessary to keep track of the
size and timing of all (guarantee) contributions. Assume that contributions are paid at
the series of time points t0 < t1 < . . . < tN < P . Then the total minimum guarantee
at time u is given by

z(u) ≡
∑
tj≤u

ztj (u) =
∑
tj≤u

gtj
etj ,b(P |tj)

∏
τ∈Itj (u)

ξ−1
τ , (9)

where ξτ is given by (6). Note that z(u) is constant for u ≥ P since all guaranteed
increases occur prior to retirement. Hence in the payout phase it is sufficient to keep
track of the single number z(P ).

In practise, however, contributions are paid at regular intervals, e.g. monthly or
annually, and this can be utilized to reduce the size of the record we have to keep
in order to calculate the guarantee. Assume that tj = t0 + j for j = 1, . . . , N , i.e.
contributions are paid once a year (or, equivalently, all contributions paid in a given
year are subject to the same tariff). Further, assume that L is an integer, e.g. L = 15.
We can then exploit that guarantees associated with contributions paid L years apart
will be subject to the same subsequent increases.

We introduce a vector of pension credits of length L, (z0(u), . . . , zL−1(u)). The
components decompose the total guarantee by the time elapsed since the guarantee
was last increased (or the contribution was made). The vector is initialized at t0 by
setting

z0(t0) = zt0(t0), zi(t0) = 0 for i = 1, . . . , L− 1. (10)

At each subsequent contribution time, tj , the vector is updated as follows

z0(tj) = zL−1(tj−1)ξ
−1
tj

+ ztj (tj), zi(tj) = zi−1(tj−1) for i = 1, . . . , L− 1. (11)

4In the actual product it is also guaranteed that zt(u) can never decrease, i.e. zt(u) =
gt

et,b(P |t)
∏

τ∈It(u)
max{ξ−1

τ , 1}. The members are thus insured against negative rates. In this pre-

sentation we consider only the “pure” product with no option elements.
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That is, the guarantee associated with the current contribution is recorded in the first
component together with the guarantees due for increase. The rest of the vector is
“shifted” one place to the right to reflect the fact that one year has passed. Note that
the vector has to be updated every year until retirement, even if no contribution is
made, i.e. gtj = 0. It is easy to verify that z(u) =

∑L−1
i=0 zi(u) for all u ≥ t0. Hence,

the total guarantee can be calculated from a record of only L numbers.

3.3 Financial fairness

Loosely speaking the guarantee is financially fair in that the members receive a fair
return for the period the money is in the fund. From a financial fairness point of view
it makes no difference whether the guarantee is given in full initially, or as a series
of guaranteed increases, as long as it reflects the current market conditions. In the
following we make these statements precise.

Strictly speaking, the guarantee is only financially fair under certain idealized as-
sumptions. First, the guaranteed annuity level is fixed at the guaranteed increase
preceding retirement. At this point the pension fund guarantees an annuity cash flow
which in principle extends well beyond maturities for which an interest rate market
can be claimed to exist. For the purpose of showing fairness we assume nevertheless
that the entire cash flow can be replicated in the market. From a practical perspective
only a small fraction of the cash flow will be (very) long dated, so this is not cause for
concern.

Second, the actual rolling annuity contains a “longevity guarantee”, in the sense that
the guaranteed pension is essentially unaffected by the future life expectancy evolution.
A part of the contribution is used to cover this, and other, risks. We return to this
issue in Section 4, but here we disregard longevity risk and instead assume that the
best estimate mortality and the realized mortality coincide.

Financial fairness amounts to showing that the discounted value of the expected benefit
cash flow equals the (guarantee) contribution. Under the simplifying assumptions made
above we need to show that for fixed t

gt = EQ

[
zt(P )

∫ ∞

P
e−

∫ w
t rsdsSt,b(w|t)dw

∣∣Ft

]
. (12)

Using (5) of Section 3.1 this is equivalent to showing

1 =
1

eb(P |t)
EQ

 ∏
τ∈It(P )

ξ−1
τ

∫ ∞

P
e−

∫ w
t rsdsSb(w|t)dw

∣∣Ft

 , (13)

where we have omitted the time subscript of eb and Sb to indicate that, by assumption,
the mortality estimate does not change over time.

Let us consider the case where It(P ) = {t, t1, t2} with t1 = t + L and t2 = t + 2L.
Recall, that by construction t < t1 < P − L ≤ t2 < P . By (6) we have

ξt = pt(t1), ξt1 = pt1(t2), ξt2 =
Sb(t2|t)
eb(P |t)

∫ ∞

P
pt2(w)Sb(w|t2)dw, (14)

where the last equality uses (4) and that mortality assumptions are constant over time.
Now, by using first (14) and the relation Sb(w|t) = Sb(t2|t)Sb(w|t2), next the tower
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property and linearity of conditional expectations, and finally repeated use of (1) we
can rewrite the right-hand side of (13) as

EQ

e− ∫ t1
t rsds

pt(t1)

e−
∫ t2
t1

rsds

pt1(t2)

∫∞
P e

−
∫ w
t2

rsdsSb(w|t2)dw∫∞
P pt2(w)Sb(w|t2)dw

∣∣Ft



=EQ

e− ∫ t1
t rsds

pt(t1)
EQ

e− ∫ t2
t1

rsds

pt1(t2)

∫∞
P EQ[e

−
∫ w
t2

rsds|Ft2 ]Sb(w|t2)dw∫∞
P pt2(w)Sb(w|t2)dw

∣∣Ft1

 ∣∣Ft



=EQ

e− ∫ t1
t rsds

pt(t1)
EQ

e− ∫ t2
t1

rsds

pt1(t2)

∣∣Ft1

 ∣∣Ft

 = EQ

[
e−

∫ t1
t rsds

pt(t1)

∣∣Ft

]
= 1.

We conclude that (disregarding longevity) rolling annuity guarantees are financially
fair. The general case can be proved similarly.

3.4 Reserving

We assume that the pension fund must at all time hold a (market value) reserve equal
to the financial value of the guarantee. We also assume that the reserve is based on
the current best estimate of future mortality. In the following we calculate the reserve
for a person born at time b and still alive.

Recall that It is the set consisting of t and the times at which the guarantee asso-
ciated with a contribution paid at time t is subsequently increased (if any). For any
two numbers a and b we let a ∧ b = min{a, b} and a ∨ b = max{a, b}. By definition
the reserve at time u for the guarantee associated with a contribution paid at time t is
given by

Vt(u) ≡ EQ

[
z̃u,t(P )

∫ ∞

P∨u
e−

∫ w
u rsdsSu,b(w|u)dw

∣∣Fu

]
for u ≥ t, (15)

where

z̃u,t(P ) =
gt

et,b(P |t)
∏
τ∈It

ξ̃−1
u,τ , (16)

with

ξ̃u,τ =

{
pτ (τ + L) for τ < P − L,∫∞
P pτ (w)Su∧τ,b(w|τ)dw/eu∧τ,b(P |τ) for P − L ≤ τ < P.

(17)

Note that ξ̃u,τ equals ξτ of (6), except for the mortality estimates used. Prior to τ , the
former uses the current (time u) mortality estimate while the latter uses the future (time
τ) estimate. The point being that the mortality estimate used in the final guaranteed
increase is not known prior to the increase. Hence, although zt(P ) of (5) is the pension
actually received, the reserve will be calculated on the basis of z̃u,t(P ) which uses the
current mortality estimate. After the final increase the two quantities are equal.
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Proposition 3.1. Consider a fixed t. Assuming the person is alive, the reserve at
u ≥ t associated with a contribution paid at time t is given by

Vt(u) =

zt(u)eu,b(P |u)pu(τN (u)) for u < τF ,

zt(u)
∫∞
P∨u pu(w)Su,b(w|u)dw for u ≥ τF ,

(18)

where τF = max It denotes the time of the final increase and, for u < τF , τN (u) =
min[It ∩ (u, P )] denotes the time of the next increase.

Proof. Consider first the case u ≥ τF . After the final increase zt(·) is constant and
equal to z̃u,t(P ). The result then follows immediately from (15) using (1).

Consider next the case u < τF . Assume first that only the final increase remains,
i.e. u < τN (u) = τF . We then have

Vt(u) = EQ

[
zt(u)ξ̃

−1
u,τF

∫ ∞

P
e−

∫ w
u rsdsSu,b(w|u)dw

∣∣Fu

]

= zt(u)E
Q

[
EQ

[
eu,b(P |τF )

∫∞
P e−

∫ w
u rsdsSu,b(w|u)dw∫∞

P pτF (w)Su,b(w|τF )dw
∣∣FτF

] ∣∣Fu

]

= zt(u)E
Q

[
e−

∫ τF
u rsdsEQ

[
eu,b(P |u)
Su,b(τF |u)

∫∞
P e

−
∫ w
τF

rsdsSu,b(w|u)dw∫∞
P pτF (w)Su,b(w|τF )dw

∣∣FτF

] ∣∣Fu

]

= zt(u)eu,b(P |u)EQ

[
e−

∫ τF
u rsds

∫∞
P EQ[e

−
∫ w
τF

rsds|FτF ]Su,b(w|τF )dw∫∞
P pτF (w)Su,b(w|τF )dw

∣∣Fu

]

= zt(u)eu,b(P |u)pu(τF ),

as claimed. Assume next that k > 1 increases remain. Denote the corresponding time
points by τi, i.e. τN (u) = τ0 < τ1 < . . . < τk−1 = τF . By iterated conditioning and the
result just shown we then have

Vt(u) = zt(u)eu,b(P |u)EQ

[
e−

∫ τ0
u rsdsEQ

[
k−2∏
i=0

e
−

∫ τi+1
τi

rsds

pτi(τi+1)

∣∣Fτk−1

] ∣∣Fu

]

= . . . = zt(u)eu,b(P |u)EQ
[
e−

∫ τ0
u rsds

∣∣Fu

]
= zt(u)eu,b(P |u)pu(τ0).

We note that in (18) the reserve is expressed in terms of the current value of the
guarantee and the time of the next increase, if any. This is important from a practical
perspective as it implies that the reserve can be calculated from the vector of pension
credits, cf. Section 3.2, and current market data and mortality estimates.

Assume that we are at a point of increase and that at least one more increase
remains, i.e. u + L = τN (u) ≤ τF . Assume also that eu−,b(P |u) = eu,b(P |u), i.e. that
the mortality estimate does not change at u. We then have

Vt(u) = zt(u)eu,b(P |u)pu(τN (u)) = zt(u−)eu,b(P |u) = Vt(u−), (19)
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showing that the reserve is unaffected by the guaranteed increase. The same can be
shown to be true at the final increase. Mathematically, the reserve is unchanged because
the guarantee is increased by (the inverse of) the same factor used to discount the new
guarantee.

3.5 Hedging

The pension fund receives contributions from a large number of people. Say that Kt

persons all born at time b pay a contribution of gt at time t, and let Ku denote the
number of people still alive at time u ≥ t. The fraction of the cohort surviving over
time is termed the realized survival (probability), S̃b. By definition, Ku = S̃b(u|t)Kt.
Realized survival is a stochastic quantity which depends on both the underlying force
of mortality (systematic variability) and the random nature of death (unsystematic
variability). By the law of large numbers, the realized survival is close to the underlying
“true” survival probability for a large cohort of i.i.d. individuals, i.e. the unsystematic
variability is negligible.

Consider first the idealized case where mortality assumptions are constant over time
and equals realized mortality. In particular, we then have eu,b(P |u) = et,b(P |u) and
S̃b(u|t) = St,b(u|t). Assume that u < τF and let us consider the total reserve set aside
for the cohort at time u,

V̄t(u) ≡ KuVt(u) = Ktzt(u)pu(τN(u))S̃b(u|t)eu,b(P |u) = Ktzt(u)pu(τN(u))et,b(P |t),

where the first equality uses the definition of realized survival and Proposition 3.1, while
the second equality uses the relations S̃b(u|t)eu,b(P |u) = St,b(u|t)et,b(P |u) = et,b(P |t).
Thus, before the final increase the reserve evolves like a zero-coupon bond with principal
Ktzt(u)et,b(P |t) expiring at the time for the next guaranteed increase, τN (u).

In practise, mortality assumptions are updated periodically. Also, realized survival
since the last update will typically be close, but not exactly equal, to assumed survival.
Let m denote the time for the latest mortality update prior to u. We then have
eu,b(P |u) = em,b(P |u) and S̃b(u|m) ≈ Sm,b(u|m), and thereby

V̄t(u) = Kmzt(u)pu(τN(u))S̃b(u|m)eu,b(P |u) ≈ Kmzt(u)pu(τN(u))em,b(P |m).

Thus, between increases and between updates of mortality assumptions the total reserve
evolves essentially like a zero-coupon bond expiring at the time for the next guaranteed
increase. Hence, from the point of view of the pension fund the liability can be semi-
statically hedged, in the sense that the hedge needs to be adjusted only every L years, or
when mortality assumptions change markedly. Further, if L is kept at a duration where
market liquidity is high, say, up to 20 years, the hedging can be done very efficiently.

After the final increase the liability takes on the duration of a fully guaranteed
annuity cash flow. However, since the final increase occurs near retirement the majority
of the resulting liability cash flow will be at durations that can easily be hedged, and
only a small fraction will be very long dated.

Finally, we mention that the reserve can also be expressed as the discounted value
of an expected benefit stream,

Vt(u) =

∫ ∞

P∨u
pu(w)E

w[z̃u,t(P )
∣∣Fu]Su,b(w|u)dw for u ≥ t, (20)
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where Ew denotes expectation with respect to the so-called w-forward measure, see e.g.
Chapter 26 of Bjrk (2009). Note that each expectation uses a different measure. The
representation highlights the fact that members are indeed guaranteed lifelong benefits,
although financially the duration only extends to the next guaranteed increase. The
representation also offers an alternative route to the proof of Proposition 3.1, but we
do not pursue that here.

4 Longevity risk

Members are guaranteed lifelong pensions at a certain level. The initial guarantee is
calculated on the basis of a best estimate mortality forecast which includes expected
future increases in life expectancy. However, there is a risk that the actual average life
span will exceed the estimate, and that the pension fund therefore will have to pay out
benefits for longer than initially assumed. This risk is termed longevity risk.

Longevity risk is borne by the pension fund, in the sense that the guaranteed in-
creases are unaffected by the life expectancy evolution. More precisely, in a collective
pension fund longevity risk is borne by the members collectively rather than individu-
ally. In practice, the mortality forecast is reestimated periodically, e.g. annually, and
the reserve is adjusted accordingly. If life expectancy increases more than expected
this will result in a reduction of collective free funds, which in turn implies lower future
indexation.

Under the forthcoming Solvency 2 regulatory framework, the solvency capital re-
quirement for life and pension insurance companies in the EU must take longevity risk
into account. In the so-called Standard Formula longevity risk is quantified by a stress
scenario in which mortality rates used for the calculation of technical provisions are
decreased (uniformly) by 20%. In the following we will quantify longevity risk by this
stress. It should be mentioned, however, that under Solvency 2 companies are also al-
lowed to use (partial) internal models to calculate longevity risk, see Jarner and Møller
(2015) for an example of a specific model.

For illustrative purposes and to obtain explicit results we will base the presentation on a
standard Gompertz-Makeham mortality law.5 We consider as usual a given cohort born
at time b. To aid interpretation we assume that µt,b = µb for all t. Hence differences
over time are due only to the increased age of the cohort. Let, for u ≥ b

µb(u) = AeBx + C, (21)

where x = u − b is the age at time u, and A = 1.5 · 10−5, B = 0.1 and C = 2 · 10−4.
The parameters are obtained as rounded estimates based on Danish mortality data for
males and females combined in 2011 for ages 20–100.6

The probability that a person from the cohort survives to time T conditioned on
being alive at time u is given by

Sb(T |u) = exp

{
−C(y − x)− A

B
(eBy − eBx)

}
, (22)

5In ATP best estimate mortality forecasts are obtained from the SAINT model, cf. Jarner and
Kryger (2011), and longevity risk is calculated by an internal model using the stochasticity of the
SAINT model.

6Data are retrieved from the Human Mortality Database, www.mortality.org. At the time of
writing, 2011 is the latest year available.
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where y = T − b and x = u − b is the age at time T and u, respectively. Further, it
follows from Theorem 2 of Missov and Lenart (2013) and (4) that the remaining life
expectancy after time T conditioned on being alive at time u can be expressed as

eb(T |u) =
1

B
eA/B

(
A

B

)C/B

Γ

(
−C

B
,
A

B
eBx

)
S−1
b (u|b), (23)

where x = T − b is the age at time T and where Γ(a,w) =
∫∞
w ta−1e−tdt denotes the

upper incomplete gamma function.
Finally, we denote by µ̃b the “stressed” force of mortality, µ̃b(u) = 0.8µb(s). Simi-

larly, we denote by S̃b and ẽb, respectively, the survival probability and remaining life
expectancy calculated on the basis of µ̃b. These quantities can be calculated from (22)
and (23) upon replacing A and C with, respectively, Ã = 1.2 · 10−5 and C̃ = 1.6 · 10−4.

To illustrate the impact of the stress, we show in Table 1 the conditional remaining
life expectancy at given ages under both µb and µ̃b, together with the absolute and
relative increase.

Age (x) 0 25 55 75 100

Life expectancy under µb 81.60 57.06 28.58 12.85 2.42

Life expectancy under µ̃b 83.94 59.31 30.60 14.35 2.90

Absolute increase 2.34 2.25 2.02 1.50 0.48

Relative increase 2.9% 4.0% 7.08% 11.6% 19.9%

Table 1: Conditional remaining life expectancy in years at given ages under µb and µ̃b, i.e.
eb(T |T ) and ẽb(T |T ) for T = b+ x.

The quantity of interest is the relative increase of the reserve. To exploit the results
above and to gain some general insights we will make the simplifying assumption that
the discount factors are of the form pt(T ) = e−(T−t)r for some fixed r. Under these
assumptions we have

pu(w)Sb(w|u) = exp

{
−(C + r)(y − x)− A

B
(eBy − eBx)

}
= Sr

b (w|u), (24)

where y = w − b and x = u − b, and Sr
b is given by (22) upon replacing C with

Cr = 2 · 10−4 + r; the corresponding “life expectancy” is denoted erb .
Let Ṽt(u) denote the reserve at time u associated with a contribution paid at time

t and based on µ̃b. Using (24), it now follows from Proposition 3.1 that

Ṽt(u)

Vt(u)
=

ẽb(P |u)/eb(P |u) for u < τF ,

ẽrb(P ∨ u|u)/erb(P ∨ u|u) for u ≥ τF ,
(25)

where τF = max It denotes the time of the final increase and ẽrb is given by (23) upon
replacing A and C with, respectively, Ã = 1.2 · 10−5 and C̃r = 1.6 · 10−4 + r.

Table 2 illustrates the impact of the Solvency 2 stress. The table shows the relative
reserve increase at different ages when the interest rate is 0%, 2% and 4%. The reserve
corresponds to a single premium paid at a given age, and the stress is applied at the
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time of payment. It is assumed that the age of retirement is P = 65 years, and that
the period between successive increases is L = 15 years.

At younger ages when one or more increases remain, in this case below age 50, the
reserve increase depends only on the expected number of years in retirement. At age
45, for instance, expected years in retirement increase from 18.4 years to 20.4 years, an
increase of 11%. Since survival until retirement is high, the expected number of years
in retirement is almost the same for all younger ages, and consequently the reserve
increase will be around 11% for all ages below age 50.

At higher ages when the pension is fixed, and perhaps already in payment, the re-
serve increase depends on the “discounted” (remaining) number of years in retirement.
As the interest rate increases the role of mortality is reduced and, consequently, the
relative reserve increase is reduced. In retirement, the reserve increase is determined
primarily by the relative increase in remaining life expectancy, cf. Table 1. The lowest
relative reserve increase is found for members about to retire. This is due to a combi-
nation of high expected number of years in retirement, and reduced sensitivity due to
discounting.

Rate Age (x)

(r) 25 45 55 65 75 85 100

0% 11.4% 11.0% 10.5% 9.0% 11.6% 14.9% 19.9%

2% 11.4% 11.0% 8.7% 7.3% 10.0% 13.5% 19.1%

4% 11.4% 11.0% 7.3% 5.9% 8.7% 12.3% 18.3%

Table 2: Relative reserve increase when applying the Solvency 2 stress of a 20% mortality
reduction. The quantity shown is ṼT (T )/VT (T ) − 1 for T = b + x, corresponding to a single
premium paid at age x. Age of retirement is P = 65 years, and period between increases is
L = 15 years.

5 Duration

In the absence of an external sponsor, a collective pension fund can only issue truly
guaranteed pensions (to all its members) if the liabilities can be financially hedged. For
theoretical considerations we often assume that (zero-coupon) bonds at all maturities
are traded. In practice, however, liability hedging at a large scale is possible only for
maturities up to around 30 years. After that point the market is shallow and illiquid.
In fact, due to the limited issuance of long-dated government bonds, market depth and
liquidity are decreasing already for maturities of 15 to 20 years.

A hedgeable lifelong guarantee is the main motivation for the product. In the
following we consider the duration of the liability and demonstrate how it evolves over
time. As an example we consider rolling annuity guarantees with a period between
guaranteed increases of L = 15 years, and we show that only a small fraction of the
total liability extends beyond 30 years at any time. Indeed, the majority of the liability
cash flow is at most 15 years; hence concentrated at maturities where market liquidity
is generally very high.

We let rt(T ) denote the continuously compounded zero-coupon yield for the period
[t, T ], defined by the relation pt(T ) = exp{−(T − t)rt(T )}. For fixed t, the yield as a
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function of T is called the yield curve. The yield curve represents the returns that can
be locked in at time t over different periods of time.

We define the interest rate sensitivity of a financial value by the (negative) relative
change in value in response to a parallel shift of the yield curve. The interest rate
sensitivity of (the price of) a zero-coupon bond is thus

−∂pt(T )

∂r

1

pt(T )
= T − t; (26)

from which it follows that the interest rate sensitivity of the present value of a cash flow
is equal to the average term to maturity of the payments (weighted by their present
value). In the following we use the interest rate sensitivity of the reserve as a measure
of the duration of the corresponding liability.7

By Proposition 3.1 and (26) the duration of the reserve at time u ≥ t associated
with a contribution paid at time t is given by

Dt(u) ≡ −∂Vt(u)/∂r

Vt(u)
=

τN (u)− u for u < τF ,∫∞
P∨u(w−u)pu(w)Su,b(w|u)dw∫∞

P∨u pu(w)Su,b(w|u)dw for u ≥ τF ,
(27)

where τF denotes the time of the final increase and, for u < τF , τN (u) denotes the
time of the next increase. We observe that between increases the duration equals the
time that remains to the next increase, reflecting the fact that the reserve evolves like a
zero-coupon bond. After annuitization at the final increase the duration is the average
term of (expected) payments.

Over the course of their working life members pay contributions periodically, e.g.
monthly or annually. The reserve thus consists of the sum of reserves correspond-
ing to contributions paid at different times. To illustrate the effect of the aggregation
of guarantees over time we consider the following simple setup.

Assume that a member pays contributions once a year from age 25 to age 64, i.e.
40 contributions in total. For ease of notation we assume that the person is born
at b = 0. Assume that the first (guarantee) contribution is g25 = 100, and that
contributions hereafter increase with 2% (continuously compounded) each year to reflect
wage increases, i.e. gt = 100 exp{(t − 25)2%} for t = 25, . . . , 64. We assume further
that the age of retirement is P = 65 years and that the period between guaranteed
increases is L = 15 years. For illustrative purposes we assume that rt(T ) = 3% for all
t and T . Finally, we assume that the mortality law is given by (21) of Section 4 and
that µt,b = µb for all t, i.e. we disregard longevity risk.

Table 3 illustrates how the guarantee build up over time. Guarantees issued for
ages below 50 are subject to one or two guaranteed increases. For these ages the initial
guarantee is based on the expected number of years in retirement and the price of a
zero-coupon bond with 15 years to maturity. Since the expected number of years in
retirement is almost constant the increase over time reflects primarily the increased
contribution. From age 50 onwards a fixed-level annuity is guaranteed at the outset.
The jump in “initial guarantee” from age 45 to age 50 is due to the longer duration of
the liability and hence higher accumulated returns being factored in.

7Indeed, interest rate sensitivity is often referred to as duration. We follow this terminology and
use the two terms interchangeably.
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In Figure 1 the acquired guarantees are broken down into how much is guaranteed
initially and how much is guaranteed at the subsequent increases. For contributions
paid at ages 25–34 the initial guarantee constitutes less than half of the final guarantee,
while for age 35–49 the initial guarantee constitutes between half and two thirds of the
final guarantee. Of the final, accumulated guarantee about two thirds are due to initial
guarantees.

Age (x) 25 30 35 40 45 50 55 60 65

Contribution 100 111 122 135 149 165 182 201 -

Years in retirement 18.1 18.1 18.2 18.3 18.4 18.6 18.8 19.3 20.1

Initial guarantee 8.7 9.6 10.5 11.6 12.7 19.5 18.2 16.9 -

Accumulated guarantee 8.7 55 105 166 254 362 523 707 831

Table 3: The table shows the contribution, the expected number of years in retirement at
the time of contribution, eb(P |x), and the additional initial guarantee acquired at the time of
contribution, i.e. zx(x) of Section 3.1. The last row shows the accumulated guarantee, including
past guaranteed increases, i.e. z(x) of Section 3.2. Note that by assumption x = t.
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Figure 1: Left plot shows the guarantee acquired for the contribution paid at a given age and
the right plot shows the accumulated guarantee at a given age. In both plots the guarantee is
divided into the part initially guaranteed (black bar), the part guaranteed at the first increase
(gray bar), and the part guaranteed at the second increase (white bar).

The total reserve and the duration of the total reserve are given by, respectively,

V (u) ≡
∑
tj≤u

Vtj (u) and D(u) ≡ −∂V (u)/∂r

V (u)
=
∑
tj≤u

Dtj (u)
Vtj (u)

V (u)
, (28)

where tj = 25 + j for j = 0, . . . , 39 are the contribution times. At each tj the reserve
jumps by the size of the contribution, ∆V (tj) ≡ V (tj) − V (tj−) = gtj ; between con-
tributions and in retirement the reserve evolves continuously according to the Thiele
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differential equation

∂V (u)

∂u
= {r + µb(u)− z(P )1[P ;∞)(u)}V (u) for u /∈ {tj : j = 0, . . . , 39}, (29)

where z(P ) denotes the final annuity level.
Figure 2 shows the evolution of V and D over time. While the reserve itself evolves

as one would expect, the duration of the reserve evolves in a less intuitive manner.
There are three distinct epochs. During the first 15 years the duration decreases from
the initial value of 15 years to just over 7.5 years immediately before age 40. From age 40
to around age 60 the duration (generally) increases as the first guarantees are renewed
and, from age 50, as fixed-level annuities are being issued. From age 60 onwards the
duration decreases as retirement approaches and, after retirement, as a consequence of
remaining life expectancy going to zero. We note that the guaranteed increases give
rise to a “ripple effect” visible as kinks after 15 and 30 years. We also note that at no
point in time is the duration of the reserve more than 15 years.
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Figure 2: Left plot shows the total reserve and right plot shows the duration of the total reserve
measured in years. The horizontal dashed line marks the “average time to next increase” of
L/2 = 7.5 years. In both plots the vertical dotted line at age 65 marks the age of retirement.

The duration of the total reserve is an aggregate statistic which measures the average
length of the cash flow. From a practical point of view it is also of interest to know the
share of long-dated liabilities, since this is the part potentially problematic to hedge.
The left plot of Figure 3 shows the reserve for liabilities with maturities longer than
30 years as a fraction of the total reserve.8 With a guarantee period of 15 years (the
case considered so far) the ”long-dated” reserve is non-negligible only in the period
leading up to retirement. The “long-dated” reserve peaks at age 56 where it accounts

8More precisely, we plot the ratio V 30(u)/V (u) as a function of u, where V 30(u) ≡
∑

tj≤u V 30
tj (u)

with V 30
tj (u) = ztj (u)

∫∞
u+30

pu(w)Sb(w|u)dw for u ≥ τF (tj), and zero otherwise. The “long-dated”

reserve, V 30, is the part of the reserve which uses discount factors with maturities of 30 years or longer.
Note that the stated expression assumes that the guarantee period is less than 30 years. For illustrative
purposes we use an interest rate of 3% for all maturities, i.e. pu(w) = exp{−(w − u)3%}. In practise,
however, it is not obvious how to value long-dated liabilities and determining proper long term interest
rates is a topic of ongoing debate.
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for just over 5% of the total reserve. At the time of retirement only 1.4% of the total
reserve concerns payments with maturities longer than 30 years. The plot also shows
that if the guarantee period is extended to 25 years the fraction of long-dated liabilities
is more than twice as high. Note that since we are using constant, flat yield curves the
total reserve is the same for all guarantee periods.

Finally, the right plot of Figure 3 shows the duration of the total reserve for guar-
antee periods of 5, 15 and 25 years. With a guarantee period of 25 years the duration is
essentially decreasing throughout the contract, while for a guarantee period of 5 years
the duration is approximately constant in most of the accumulation phase and rising
towards the end. In contrast, with a guarantee period of 15 years the duration of the
liability is of similar magnitude in the entire accumulation phase and in the early part
of the payout phase. It might be argued that a flat duration profile is preferable since
different cohorts then have similar hedging demands, i.e. their liabilities are equally
“risky”.
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Figure 3: Left plot shows the reserve for maturities over 30 years as a fraction of the total
reserve and right plot shows the duration of the total reserve measured in years. In both plots
the solid line represents a guarantee period of 15 years, while the dashed lines below and above
the solid lines represent guarantee periods of 5 and 25 years, respectively. The vertical dotted
line at age 65 marks the age of retirement.

6 Simulation study

In the following we present a simulation study of how the performance of the rolling
annuity depends on the length of the guarantee period. We measure the value of the
final annuity in real terms since, arguably, this is the only yardstick of interest when it
comes to pensions. The analysis is based on a joint stochastic model of interest rates
and inflation dynamics also used by Munk et al. (2004).

Intuitively, with (nominal) yield curves being generally upwardly sloping, longer
guarantees have the benefit of higher returns on average than shorter guarantees. How-
ever, shorter guarantees are less effected by a period of low interest rates and they
sooner benefit from a subsequent rise in interest rates than longer guarantees “locking
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in” low returns for a long time. In real terms, assuming (nominal) interest rates and
inflation being correlated, we similarly expect longer guarantees to perform better on
average than shorter guarantees. On the other hand, we expect shorter guarantees to
track inflation more closely than longer guarantees. The length of the guarantee period
thus represents a trade-off between higher average returns versus better adaptation to
inflation.

6.1 Capital market model

We assume that the short (nominal) interest rate follows an Ornstein-Uhlenbeck pro-
cess,

drt = κ(r̄ − rt)dt+ σrdW
r
t , (30)

where r̄ is the long-run mean of the short interest rate, κ describes the degree of mean
reversion, σr is the interest rate volatility, andW r is a standard Brownian motion. Note
that (30) describes the “real world” dynamics of the short interest rate — sometimes
referred to as the P -dynamics as opposed to the Q-dynamics used for pricing.

We assume further that the term structure of interest rates (the yield curve) is of the
form considered by Vasicek (1977). In particular, the price at time t of a zero-coupon
bond maturing at time T ≥ t is given by

pt(T ) = exp {G(∆)−H(∆)rt} , (31)

with ∆ = T − t,

H(∆) =
1

a
(1− exp{−a∆}) , (32)

G(∆) =

(
b− σ2

r

2a2

)
(H(∆)−∆)− σ2

r

4a
H2(∆), (33)

and where a and b are parameters controlling the slope and level of the yield curves.9

Recall that the continuously compounded zero-coupon yield for the period [t, T ],
rt(T ), is defined by the relation pt(T ) = exp{−(T − t)rt(T )}. It follows from (31)–(33)
that

rt(T ) =
1− exp{−a∆}

a∆
rt +

(
b− σ2

r

2a2

)(
1− H(∆)

∆

)
+

σ2
r

4a

H2(∆)

∆
, (34)

where ∆ = T − t. Since H(∆) is uniformly bounded, it follows from (34) that all yield
curves have the same asymptote

rt(∞) = lim
T→∞

rt(T ) = b− σ2
r

2a2
. (35)

It is easy to show that this is also the asymptotic value of the forward rate, ft(T ),
defined by ft(T ) = −∂ log pt(T )/∂T .

9Formally, the pricing formula (31) follows from (30) by a no-arbitrage argument under the addi-
tional assumption that the market price of (interest rate) risk is an affine function of rt. The chosen
parametrization corresponds to the market price of risk being of the form λt = {(a−κ)rt+κr̄−ab}/σr.
The price of a zero-coupon bond can be obtained by the risk-neutral valuation formula (1), where the
risk-neutral interest rate dynamics are given by drt = a(b− rt)dt+ σrdW

Q
t .
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Returning to (34), we see that a determines how strongly the short rate influences
yields at longer maturities and thereby the curve steepness. Large values of a imply
fast convergence to the asymptotic value and hence steep yield curves, while low values
of a imply slow convergence and hence flat yield curves.

In order to evaluate the effect of inflation we introduce a price index process, I, which
measures the nominal price of a real consumption good. We assume that I starts at 1
and that it subsequently evolves according to the following dynamics

dIt
It

= πtdt+ σIdW
I
t (36)

and

dπt = β(π̄ − πt)dt+ σπdW
π
t , (37)

where πt is the expected rate of inflation, π̄ is the long-run mean inflation rate, β
describes the degree of mean reversion, σπ is the volatility of the expected inflation
rate, while σI is the volatility of the price index. Thus the price index is influenced by
both expected inflation and unexpected inflation shocks, where the expected inflation
forms a persistent process while the shocks are mutually independent.

We will present an equilibrium analysis and for that reason we will be using long-
run consensus parameter values rather than historical estimates. We let r̄ = 3% and
π̄ = 2%. This corresponds (approximately) to the inflation target of the European
Central Bank (ECB) and a long-run real interest rate of 1%. We assume that both
the short rate and the expected inflation are persistent processes, which over prolonged
periods can deviate substantially from the long-run mean. Hence we use a low degree
of mean reversion (κ = β = 5%) and moderate volatility (σr = σπ = 0.5%).

The steepness of the yield curve determines the size of the term premium earned
by long guarantees. We let the asymptotic interest (and forward) rate equal 4.2%,
which corresponds to the ultimate forward rate (UFR) of the Solvency 2 regulatory
framework. However, since we do not wish to exaggerate the term premium we assume
a very slow convergence towards this level, i.e. very flat yield curves. Specifically, we
use a = 3% and b = 5.6%. With a short rate of e.g. rt = 3% this leads to a modest
market price of interest risk of 16% (= −{(a− κ)3% + κr̄ − ab}/σr).

The inflation tracking properties of short guarantees depend crucially on the cor-
relation between inflation and (short) interest rates. We let ρ denote the correlation
between the two underlying driving Brownian motions W r and Wπ. In the analysis we
vary ρ from 0 to 1 to illustrate the sensitivity to this assumption. Finally, we assume
that there is a modest amount of unexpected inflation (σI = 0.25%) and that unex-
pected inflation is independent of the other stochastic factors, W I ⊥⊥ (W r,W π). Note
that this assumptions implies that even if ρ = 1, the short rate will not be perfectly
correlated with (increments of) the price index.

6.2 Simulation

We consider the same basic setup as in Section 5. We assume that age of retirement
is P = 65 years and that contributions are paid annually from age 25 to age 64,
i.e. 40 contributions in total. For ease of notation we assume that the person under
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consideration is born at time b = 0. We disregard longevity risk and use the mortality
law given by (21) of Section 4 for all t, i.e. µt,b = µb.

In practise contributions to pension schemes are often calculated as a percentage
of the wage. Contributions linked to (wage) inflation offer partial protection of the
purchase power of the final pension, since if inflation increases during the accumulation
phase future contributions will be higher. To separate this effect from the inflation
protection properties of the product itself we will consider two different contribution
streams. In both cases we assume an initial (guarantee) contribution of g25 = 100. In
the first case, we assume that future contributions increase with the average expected
inflation of π̄ = 2%, i.e. gt = 100 exp{(t−25)2%} for t = 25, . . . , 64. In the second case,
we assume that contributions are price indexed, i.e. gt = 100It/I25 for t = 25, . . . , 64.

We consider rolling annuities with guarantee periods of L = 1, 2, . . . , 30 years under
various assumptions of the correlation, ρ, between (expected) inflation and the short
rate. For each combination of L, ρ and contribution indexation we calculate the level of
the final annuity in real terms, z(P )/IP , in 100.000 scenarios. All scenarios are started
at the long-run mean, r25 = 3%, π25 = 2% and I25 = 1.

As described in Section 3.1, the member gets a minimum guarantee at the time of
contribution and a series of subsequent guaranteed increases, all of which are calculated
at prevailing market rates. The (inverse of) the increment factor at time τ is denoted ξτ
and is given by formula (6). The factor of the last increment prior to retirement is given
by an integral of the zero-coupon bond functional and the survival function over the
retirement period. This representation is useful for theoretical considerations, but it is
costly in a simulation context since it has to be evaluated numerically.10 For reasons
of computational efficiency we therefore replace the integral with a sum from P = 65
years to an assumed maximum age of 120 years; tantamount to replacing the original
continuous benefit stream with benefits being paid once a year at the beneficiary’s
birthday as long as she is alive.

For each scenario we need to simulate {(rt, It) : t = 26, . . . , 65}. First note, that by
Itô’s lemma we have for δ ≥ 0 the integral representations

rt+δ = r̄ + e−κδ(rt − r̄) + σr

∫ t+δ

t
e−κ(t+δ−s)dW r

s , (38)

πt+δ = π̄ + e−βδ(πt − π̄) + σπ

∫ t+δ

t
e−β(t+δ−s)dW π

s , (39)∫ t+δ

t
πsds = π̄δ +

1− e−βδ

β
(πt − π̄) + σπ

∫ t+δ

t

1− e−β(t+δ−s)

β
dW π

s , (40)

It+δ = It exp

{∫ t+δ

t
πsds−

σ2
I

2
δ + σI(W

I
t+δ −W I

t )

}
, (41)

where the last equality uses the assumption thatW I andW π are independent. It follows
that we can construct the path {(rt, It) : t = 26, . . . , 65} by successive simulations of
(rt+1, πt+1,

∫ t+1
t πsds,W

I
t+1 −W I

t ) given (rt, πt) for t = 25, . . . , 64. Proposition A.1 in

10In Section 4 we exploited the fact that when the yield curve is flat and the mortality law is of
Gompertz-Makeham form, the integral can in fact be evaluated analytically as an “life expectancy”
under a modified mortality law, cf. formula (24). This computational trick is however not available in
the more general case considered here.
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the appendix states the (conditional) distribution of the first three components, while
the fourth component is distributed as a standard normal variable and independent of
the other components (by assumption).

6.3 Results

In the following we examine how the rolling annuity performs under different lengths
of the guarantee period (L), different correlations between the short interest rate and
expected inflation (ρ), and different contribution indexation schemes. We consider
the level of the final annuity in real terms, z(P )/IP , and we take the median in this
distribution as a measure of reward and the 5%-quantile as a measure of “risk”.11

Figure 4 plots the median against the 5%-quantile in the case where contributions
increase deterministically with 2% per year. We see that the median is increasing in the
length of the guarantee, although the marginal increase is rather small after 20 years.
This is consistent with the fact that the yield curves in the simulations are generally
upwardly sloping, but almost flat in the long end. We also observe that the median
does not depend on the assumed correlation between interest rates and inflation. Thus,
regardless of the correlation longer guarantees typically perform better than shorter
guarantees.

The risk, on the other hand, depends highly on the correlation between interest
rates and inflation. Generally, a higher correlation implies that nominal rates possess a
stronger link to real rates, which in turn implies that (nominal) guarantees become less
risky in real terms, i.e. the curves shift to the right as correlation is increased. Intu-
itively, short guarantees should have a stronger link to inflation than longer guarantees,
and consequently a lower risk in real terms. This, however, is countered by the typically
higher yield of longer guarantees. Unless the correlation is very high, the latter effect
dominates the former, such that longer guarantees are in fact less risky than shorter
guarantees. Perhaps surprisingly, we see that only for correlations of about 90% or
higher does the “stickiness” of long guarantees increase their risk. Even in this situa-
tion the risk is initially decreasing in the length of the guarantee, attains it minimum
somewhere between 10 and 20 years, and increases only moderately for the very longest
guarantees.

Figure 5 plots the median against the 5%-quantile of the real annuity level in the case
where contributions are inflation indexed. This case mimics the real life situation, where
contributions are often linked to wage and thereby indirectly to inflation. Compared to
Figure 4 with deterministic contribution indexation, the median is essentially the same
while the risk is reduced markedly. The inflation indexation of contributions effectively
mitigate the inflation risk of longer guarantees such that longer guarantees are now less
risky than shorter guarantees for all correlations except the most extreme.

We finally note, that the kinks in the curve for ρ = 1 coincide with changes in the
maximal number of guaranteed increases of the rolling annuity. For guarantees of 20
years or more there is at most one subsequent increase, for guarantees between 14 and
19 years there are at most two subsequent increases, for guarantees between 10 and 13
years there are at most three subsequent increases and so forth. The kinks are also
visible in the other curves, but much less pronounced.

11Note that, since higher quantiles are less risky than lower quantiles, the 5%-quantile is a measure
of lack of risk rather than of risk. For this reason the “risk-reward” plots of Figures 4 and 5 are plotted
with the abscissa inverted.
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Figure 4: Plot of the median against the 5%-quantile of the final annuity level in real terms,
z(P )/IP , for varying correlation, ρ, between interest rates and inflation. For each correlation
the guarantee period, L, is varied from 1 year (lower dots) to 30 years (upper dots). Guarantee
periods of 10, 20 and 30 years are marked with larger dots for visual aid. Contributions are
indexed with 2% each year.

In economics, the standard approach to comparing (and optimizing) payout profiles is
through their expected utility. We consider as before the level of the final annuity in
real terms and measure the utility by a constant relative risk aversion (CRRA) function,

E

[
u

(
z(P )

IP

)]
= E

[
1

1− γ

(
z(P )

IP

)1−γ
]
, (42)

where γ > 0 is a risk aversion parameter.12 In contrast to the previous analysis where
we looked at two specific quantiles in the distribution, the utility approach takes the
entire distribution into account.

The certainty equivalent (CE) is defined as the constant (real) payout that yields
the same utility as a given stochastic payout. It follows from (42) that with CRRA
utility the certainty equivalent is given by

CE =

[
E

(
z(P )

IP

)1−γ
]1/(1−γ)

. (43)

The certainty equivalent can be interpreted as the fixed (real) payout you are willing
to accept in exchange for the original stochastic payout. This interpretation yields the
certainty equivalent a more appealing measure than utility itself which is purely an
ordinal measure for ranking different profiles.

Figure 6 plots the certainty equivalent as a function of the length of the guarantee
in the case where contributions are indexed with 2% per year. The four plots show the
certainty equivalent for risk aversion parameters ranging from low risk aversion (γ = 2)
to very high risk aversion (γ = 20). In each plot the certainty equivalent is computed
for moderate (ρ = 0.5) to full (ρ = 1) correlation between interest rates and inflation.

12By a limit argument, the special case γ = 1 corresponds to u(x) = log(x).
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Figure 5: Plot of the median against the 5%-quantile of the final annuity level in real terms,
z(P )/IP , for varying correlation, ρ, between interest rates and inflation. For each correlation
the guarantee period, L, is varied from 1 year (lower dots) to 30 years (upper dots). Guarantee
periods of 10, 20 and 30 years are marked with larger dots for visual aid. Contributions are
inflation indexed.

For low risk aversion the certainty equivalent is only slightly smaller than the median
payout (shown in Figure 4), and it depends only little on the correlation. In this case
you are not overly concerned with adverse outcomes and you demand a fixed payment
close to the typical outcome. Since longer guarantees typically have a higher yield than
shorter guarantees you prefer the longest possible guarantee.

Three things happen as the level of risk aversion increases. First, you are willing
to accept smaller and smaller fixed (real) payments as you become more and more
adverse to bad outcomes, i.e. the certainty equivalent decreases. Second, the certainty
equivalent depends more and more on the correlation, i.e. the gap between the curves
widen. With a lower correlation the fraction of adverse outcomes increases and you are
willing to accept a smaller and smaller compensation to avoid the increasing number
of bad outcomes. With higher risk aversion this effect becomes stronger. Third, when
correlation is high you prefer shorter guarantees, i.e. the upper curves in the lower
plots become hump-shaped. Longer guarantees typically perform better than shorter
guarantees, but when correlation is high shorter guarantees have the benefit of fewer
bad outcomes. When your risk aversion increases you value the inflation protection
property of short guarantees more and more.

In summary, we find that the higher yield of longer guarantees generally outweigh
the closer link to inflation of shorter guarantees. Shorter guarantee are preferred only
when correlation and risk aversion are both high. In this situation, the optimal length
of the guarantee is 10 to 20 years.
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Figure 6: Plots of the certainty equivalent of the real annuity level as a function of the guarantee
period. Contributions are indexed with 2% each year. From lower to upper, the curves in each
plot have correlations, ρ, between interest rates and inflation of 0.5, 0.75, 0.9 and 1, respectively.
The different degrees of risk aversion correspond to γ = 2 (low), γ = 5 (moderate), γ = 10
(high) and γ = 20 (very high).

6.4 Comments

The real value of the rolling annuity payout depends on the slope of the yield curve
(term premium) and the correlation between interest rates and inflation. Even with
modest term premiums (as in our model) and high correlation, we generally find that
longer guarantees are preferable to shorter guarantees.

The presented analysis quantifies the risk-reward trade-off in equilibrium. It might
be argued that with current interest rates at historically low levels, long guarantees
should not be issued. The current market situation certainly speaks in favor of shorter
guarantees. However, even a small term premium might be sufficient to merit longer
guarantees unless increased interest rates are imminent.
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7 Conclusion

In this paper we have proposed a new type of with-profits annuities: the rolling annuity.
We have provided the tariff, derived the reserve and shown financial fairness. We have
also considered longevity risk, the duration of the liabilities, and the real value of the
payout via a simulation study.

The rolling annuity guarantees a lifelong benefit in the form of an initial minimum
guarantee and a series of subsequent guaranteed increases prior to retirement. The
key insight is that, prior to the final increase, the liability can be hedged by a zero-
coupon bond maturing at the time for the next increase. This implies that the rolling
annuity can be financially hedged at large scale as long as the guarantee period does not
extend beyond the horizon of the liquid part of the relevant interest rate market, say 20
years. Keeping the guarantee period below 20 years also implies that the financial value
and the regulatory value under Solvency 2 will be very similar, which simplifies risk
management considerably. The rolling annuity implemented at ATP has a guarantee
period of 15 years.

In the rolling annuity as here presented, “life expectancy assumptions are guaran-
teed”. This means that life expectancy increases beyond what was assumed at the time
of contribution have no (adverse) effect on the final annuity level. This is an attrac-
tive guarantee from the members’ point of view, but it entails longevity risk for the
provider. At ATP, members acquire rolling annuities for only 80 pct. of their contribu-
tions, while the remaining 20 pct. enter collective free funds. The free funds act as risk
capital for covering longevity and other risks. Pension funds with different ownership
and capital structures and facing different regulatory requirements are likely to provide
risk capital by other means. Alternatively, longevity risk and thereby the need for risk
capital can be reduced by weakening the “life expectancy guarantee”, e.g. by reducing
the subsequent increases if life expectancy evolves faster than expected.

The rolling annuity is intended to form part of a with-profits contract, where the
rolling annuity provides the guarantees and a return-seeking portfolio provides excess
returns via exposure to e.g. the stock market. At ATP the free funds provide risk capital
to a substantial portfolio harvesting a variety of market risk factors. The value created
from these activities are transferred to the members in the form of additional annuity
indexation. Other pension funds might prefer different profit-sharing mechanisms.

The ultimate purpose of a pension is to provide an income stream in retirement.
Protecting the purchasing power of the pension should be a key objective of the product
design. The simulation study shows that the guarantees themselves, and in particular
in combination with inflation indexed contributions, offer some but far from perfect
inflation protection. Additional inflation protection can be achieved by including in-
flation exposure in the return-seeking portfolio, either indirectly via e.g. commodities
and real estate, or directly via index bonds, inflation swaps or other derivatives.
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A Auxiliary distributional result

The simulation of the capital market in Section 6 is performed by use of the following
distributional result, which we state without proof. The result is partly contained in
Theorem 1 of Ben-Ameur et al. (2007); the full result can be proved along the same
lines as their result.

Proposition A.1. Let the dynamics of rt and πt be given by (30) and (37) of Sec-
tion 6.1, and let ρ denote the correlation between W r and W π.

For any t and any δ ≥ 0 the conditional distribution of (rt+δ, πt+δ,
∫ t+δ
t πsds)

′ given
(rt, πt) is multivariate normal,(

rt+δ, πt+δ,

∫ t+δ

t
πsds

)′ ∣∣ (rt, πt) ∼ N3

(
m(δ, rt, πt),Σ(δ)

)
, (44)

with mean vector and covariance matrix given by

m(δ, rt, πt) =


r̄ + e−κδ(rt − r̄)

π̄ + e−βδ(πt − π̄)

π̄δ + 1−e−βδ

β (πt − π̄)

 , Σ(δ) =


Σ11(δ) Σ12(δ) Σ13(δ)

Σ21(δ) Σ22(δ) Σ23(δ)

Σ31(δ) Σ32(δ) Σ33(δ)

 ,

where

Σ11(δ) = σ2
r

1− e−2κδ

2κ
,

Σ22(δ) = σ2
π

1− e−2βδ

2β
,

Σ33(δ) =
σ2
π

2β3
(−3 + 2βδ + 4e−βδ − e−2βδ),

Σ12(δ) = Σ21(δ) = ρσrσπ
1− e−(β+κ)δ

β + κ
,

Σ13(δ) = Σ31(δ) =
ρσrσπ
β

(
1− e−κδ

κ
− 1− e−(β+κ)δ

β + κ

)
,

Σ23(δ) = Σ32(δ) =
σ2
π

2β2
(1− 2e−βδ + e−2βδ).
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