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1 Introduction

Mortality rates have been steadily declining in most of the industrialized world throughout
the 20th century and there are no signs of improvements decelerating. On the contrary,
populations where mortality rates are already very low still experience rates of improve-
ment of the same, or even higher, magnitude than historically.

A great deal of models for modeling and projecting mortality rates have been proposed
in recent years. However, the model formulated by Lee and Carter (1992) is still the most
widely used. The Lee-Carter model describes the age-speci�c death rates (ASDRs) by
the log-bilinear relation

log µ(t, x) = ax + bxkt, (1)

where a and b are age-speci�c parameters and k is a time-varying index. Projections are
made by estimating the parameters of the model from observed data and extrapolate the
time index k by standard time series methods. Typically k is modeled as a random walk
with drift. The combination of a linear forecast of k and structure (1) implies that ASDRs
are forecasted to improve by the same age-speci�c factor each year.

The Lee-Carter model has gained widespread popularity due to its simplicity and ease
of interpretation. Essentially, ASDRs are forecasted to improve by the average rate of
improvement over the estimation period. However, the assumption that rates of improve-
ment are constant over time is not generally satis�ed. Indeed, the mortality experience of
several countries has shown increasing mortality improvement rates over time, in particu-
lar for older age groups, see e.g. Lee and Miller (2001); Booth et al. (2002); Renshaw and
Haberman (2003); Bongaarts (2005). Consequently, Lee-Carter forecasts have in many
situations underestimated the gains in old-age mortality.

Left panel of Figure 1 shows ASDRs for US males from 1950 to 2010 based on data
from the Human Mortality Database (www.mortality.org). The death rates are plotted on
a logarithmic scale and increasing rates of improvement can be observed by the concavity,
rather than linearity, of the age-speci�c curves. The consequence for Lee-Carter forecasts
is exempli�ed in the right panel of Figure 1 which shows actual and Lee-Carter forecasted
period remaining life expectancy of 60-year old US males.1 Due to increasing rates of
improvement the forecasts increase when a later estimation period is used. Still, all
historic forecasts are below the actual life expectancy experience.

In the light of changing rates of mortality improvement it has been suggested to �t the
Lee-Carter model to shorter periods of data for which death rates comply better with the
log-linearity assumption, see e.g. Lee and Miller (2001); Tuljapurkar et al. (2000); Booth
et al. (2002). In an environment of increasing rates of improvement the use of shorter,
more recent data periods can indeed result in better forecasts. However, future increases
in old-age mortality improvement rates � beyond what has been seen historically �
cannot be captured by this method.

1The period (remaining) life expectancy is a summary measure for the mortality pro�le of a population
in a given year. It is calculated on the basis of the age-speci�c mortality rates for that year. Assuming
death rates continue to decline the life expectancy experienced by a given cohort will be higher. This
quantity is termed the cohort life expectancy.
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Figure 1: Left panel shows observed death rates for US males from 1950 to 2010 for ages 20,

30, . . ., 100 years. Right panel shows remaining period life expectancy of US males age 60. The

solid line is the actual life expectancy and the dashed lines are forecasts based on the Lee-Carter

model with estimation periods 1950�1980, 1960�1990, 1970�2000 and 1980�2010.

1.1 Stochastic frailty models

In this paper we investigate the use of frailty theory to address the pattern of changing
rates of improvement. Frailty theory rests on the assumption that cohorts are hetero-
geneous and that some people are more susceptible to death (frail) than others. Frail
individuals tend to die sooner than stronger individuals leading to old cohorts being dom-
inated by low mortality individuals. In e�ect, the selection mechanism causes the cohort
intensity to "slow down", i.e. to increase less rapidly than the individual intensity. This
has been used to explain the logistic form of old-age mortality observed in data, see e.g.
Thatcher (1999).

In the model introduced by Vaupel et al. (1979) frailty enters as an unobservable,
positive random quantify Z acting multiplicatively on an underlying baseline mortality
intensity. The observable (aggregate) mortality intensity takes the form

µ(t, x) = E[Z|t, x]µbase(t, x), (2)

where E[Z|t, x] denotes mean frailty at time t for age x, and µbase(t, x) is the underlying
baseline intensity for an individual with frailty one. We assume without loss of generality
that mean frailty at birth is one. For young ages with low mortality mean frailty is close
to one, while for old ages mean frailty gradually decreases as selection takes e�ect.

Frailty theory o�ers an explantation to the observed change in improvement rates of
old-age mortality and it suggests that we might expect to see higher rates of improvements
in the future. As the probability of attaining a given (old) age increases over time the
selection e�ect weakens and mean frailty increases towards one. This increase partly
o�sets the underlying improvements in individual baseline intensity, cf. (2). Initially
when selection is high old-age mortality rates will improve slowly (or even increase), but
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over time as selection weakens improvements in old-age mortality will gradually increase
towards baseline improvement rates.

In this paper we will use structure (2) as the basis for mortality modeling. We will show
how a given model for aggregate mortality, e.g. the Lee-Carter model, can be "fragilized"
by using it as a model for the underlying individual mortality instead. This procedure will
enable us to model logistic-type old-age mortality and changing rates of improvement while
preserving the structure of the original model and the underlying time-series dynamics.
As an example, a "fragilized" Lee-Carter model takes the form

µ(t, x) = E[Z|t, x] exp[ax + bxkt]. (3)

In Section 4.2 we will compare this model to the ordinary Lee-Carter model.
We show how to perform maximum likelihood estimation and how to forecast in mod-

els of form (2). Estimation will be based on a Poisson pseudo-likelihood which allows
for general speci�cations of the frailty distribution, e.g. the generalized stable laws of
Hougaard (1986). We also generalize (2) to include an additive (non-frailty) term and
show how models of this form can be estimated by the EM-algorithm. Methods for joint
maximum likelihood estimation of the frailty distribution and the baseline intensity are
derived based on the (conditional) likelihood for �xed frailty distribution.

In contrast to the typical use of frailty theory in mortality modeling our approach does
not rely on a speci�c parametric model. Indeed, we show how essentially any combination
of frailty distribution and parametric or semi-parametric model for baseline intensity can
be estimated. The only requirement is that the underlying baseline mortality model
can be estimated (by maximum likelihood) and that the Laplace transform of the frailty
distribution is known.

Frailty theory is well-established in biostatics and survival analysis and several mono-
graphs are devoted to the topic, e.g. Wienke (2010); Hanagal (2011). In demographic and
actuarial science frailty models are also known as heterogeneity models. They have been
used in mortality modeling to �t the logistic form of old-age mortality, see e.g. Wang and
Brown (1998); Butt and Haberman (2004); Olivieri (2006); Cairns et al. (2006); Spreeuw
et al. (2013), and to allow for overdispersion in mortality data, cf. Li et al. (2009).

The present use of frailty theory is closest in spirit to Jarner and Kryger (2011) in
which a deterministic frailty model is used to describe the trend in international mortality.
However, the methods developed in this paper greatly extend that work by incorporating
frailty into any standard stochastic mortality model.

1.2 Outline

The rest of the paper is organized as follows. In Section 2 we give a brief introduction
to frailty theory to establish the fundamental relation between cohort and individual
mortality on which our approach relies. Section 3 is the main theoretical chapter in which
stochastic frailty models are formalized and estimation and forecasting discussed. This is
followed in Section4 by applications to a parametric time-series model and the Lee-Carter
model. Section 5 contains a generalization of stochastic frailty models and explains how
they can be estimated by the EM-algorithm. Finally, Section 6 o�ers some concluding
remarks.
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2 Frailty theory

In this section we go through the basic theory and establish relations to be used in the
following. For ease of exposition we consider only a single birth cohort in a continuous-
time model. Later on we will add a time parameter. As our starting point we take
the frailty model of Vaupel et al. (1979) in which frailty is modeled as an unobservable,
non-negative quantity Z acting multiplicatively on an underlying, baseline (mortality)
intensity. The intensity, or death rate, of an individual of age x with frailty z is given by

µ(x; z) = z µbase(x), (4)

where µbase is the baseline intensity describing the age e�ect. The corresponding survival
function, i.e. the probability of the person surviving to age x, is

S(x; z) = exp

(
−
∫ x

0

µ(u; z)du

)
= exp (−zI(x)) , (5)

where I denotes the integrated baseline intensity,

I(x) =

∫ x

0

µbase(u)du. (6)

The survival function of the cohort, i.e. the expected fraction of the cohort surviving
to age x, is then

S(x) = E [S(x;Z)] = E [exp (−ZI(x))] = L (I(x)) , (7)

where L denotes the Laplace transform of the frailty distribution (at birth),

L(s) = E [exp(−sZ)] . (8)

Assuming su�cient regularity the (conditional) mean frailty of the cohort at age x is given
by

E[Z|x] = E [ZS(x;Z)]

S(x)
=

E [Z exp (−ZI(x))]

L(I(x))
= −L′(I(x))

L(I(x))
= ν ′(I(x)), (9)

where ′ denotes di�erentiation and ν(s) = − logL(s). It follows that the cohort intensity
can be written as

µ(x) = − d

dx
logS(x) = ν ′(I(x))I ′(x) = E[Z|x]µbase(x). (10)

The derivations above relating mean frailty and cohort intensity to the frailty distribution
and baseline intensity provide the usual tools for frailty modeling. For later use we
make the additional observation that mean frailty can also be expressed in terms of the
integrated cohort intensity,

H(x) =

∫ x

0

µ(u)du. (11)

The cohort survival function (7) provides the following link between H and I,

S(x) = exp (−H(x)) = L (I(x)) , (12)
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from which we obtain H(x) = ν(I(x)), and thereby I(x) = ν−1(H(x)). By (9) and (10)
we then get the expression

µ(x) = ν ′(ν−1{H(x)})µbase(x). (13)

The idea later on is to replace H by a non-parametric estimate obtained from data, i.e.
the integrated observed (empirical) death rates. The substitution disentangles the frailty
distribution and the baseline intensity which greatly simpli�es the estimation procedure.

In order to apply the theory we need to identity suitable frailty distributions and
their Laplace transforms. Typically, the baseline intensity contains a scale parameter in
which case it is customary to assume that the frailty distribution has mean one to ensure
identi�ability. We will also make this assumption here.

2.1 Gamma and inverse Gaussian frailty

The frailty distributions most often employed in mortality modeling are the Gamma and
inverse Gaussian distributions, see e.g. Vaupel et al. (1979); Hougaard (1984); Manton
et al. (1986); Butt and Haberman (2004); Jarner and Kryger (2011); Spreeuw et al. (2013).
Below we state their Laplace transforms and comment on their use.

When frailty is Gamma-distributed with mean one and variance σ2 the Laplace trans-
form and mean frailty are given by

L(s) =
(
1 + σ2s

)−1/σ2

, (14)

E[Z|x] =
(
1 + σ2I(x)

)−1
= exp

(
−σ2H(x)

)
. (15)

It is well-known that Gamma frailty in combination with Gompertz or Makeham baseline
intensity leads to a cohort intensity of logistic type, see e.g. Example 2.1 of Jarner and
Kryger (2011) for details.2 This is also known as the Perks model, Perks (1932), and it
has been found to describe old-age mortality very well, see e.g. Thatcher et al. (1998);
Thatcher (1999); Cairns et al. (2006). Gamma-distributed frailty is also mathematically
tractable and allows explicit calculations of many quantities of interest, e.g. frailty among
survivors at a given age is Gamma-distributed with known scale and shape parameters,
cf. Vaupel et al. (1979).

When frailty follows an inverse Gaussian distribution with mean one and variance σ2

we have for the Laplace transform and mean frailty

L(s) = exp

[
1−

√
1 + 2σ2s

σ2

]
, (16)

E[Z|x] =
(
1 + 2σ2I(x)

)−1/2
=

(
1 + σ2H(x)

)−1
. (17)

Similar to Gamma frailty inverse Gaussian frailty enjoys a number of nice theoretical
properties, e.g. the frailty distribution among survivors of a given age is again inverse

2A Gompertz intensity is of the form µbase(x) = exp(a+bx), while a Makeham intensity is of the form
µbase(x) = exp(a+ bx) + c. A Makeham intensity is also sometimes referred to as a Gompertz-Makeham
intensity.
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Gaussian and an explicit formula for the density exists, see Hougaard (1984). Hougaard
(1984) shows further that for inverse Gaussian frailty the coe�cient of variation among
survivors is decreasing with age making the cohort more homogeneous as it gets older,
while for Gamma frailty the coe�cient of variation is constant. Thus the impact of frailty
is smaller for inverse Gaussian frailty than for Gamma frailty. From (15) and (17) we
also see directly how Gamma frailty "slows" down baseline intensity more than inverse
Gaussian frailty.

It is generally found that Gamma frailty and the associated logistic form provides a
better description of old-age mortality than inverse Gaussian frailty, see e.g. Butt and
Haberman (2004); Spreeuw et al. (2013). Furthermore, Abbring and van der Berg (2007)
show that for a large class of initial frailty distributions the frailty distribution among
survivors converges to a Gamma distribution as the integrated intensity tends to in�nity.
Thus overall the Gamma distribution is a good default choice.

That being said, it is not immediately clear that this conclusion carries over to the
case where frailty is introduced to model increasing rates of improvement over time.

2.2 Positive stable frailty

Hougaard (1986) introduced a family of generalized stable laws which include the Gamma
and inverse Gaussian distributions as special cases. The family is obtained by exponential
tilting of stable densities with index α ∈ [0, 1). The stable laws themselves only have mo-
ments of order strictly less than α, while moments of all orders exist for the exponentially
tilted densities. From the original three-parameter family we obtain a two-parameter
family by imposing the condition that mean frailty is one.

When Z follows a generalized stable law with index α ∈ [0, 1), mean one and variance
σ2 the Laplace transform and mean frailty are given by3

L(s) = exp

[
1− α

α

{
1− [1 + σ2s/(1− α)]α

σ2

}]
, (18)

E[Z|x] =
[
1 +

σ2

1− α
I(x)

]α−1

=

[
1 +

α

1− α
σ2H(x)

](α−1)/α

. (19)

We note that for α = 0 (de�ned by continuity) the generalized stable law specializes to the
Gamma distribution, while for α = 1/2 it specializes to the inverse Gaussian distribution.
While Gamma and inverse Gaussian densities are available in closed form, generally only
series representations of (tilted) stable densities exist, cf. Hougaard (1986) and Lemma
XVII.6.1 of Feller (1971).

In either case, we have simple closed form expressions for mean frailty in terms of
integrated baseline and cohort intensity which is all we need for estimation and forecasting
purposes. Moreover, the fact that the parametric family spans the two most commonly
used frailty distributions, Gamma and inverse Gaussian, opens for a uni�ed approach for
joint estimation of frailty and baseline parameters.

3The stated formulaes are obtained from Hougaard (1986) using the parametrization θ = (1− α)/σ2

and δ = [(1− α)/σ2]1−α.
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The family has been further generalized by Aalen (1988, 1992) to include also negative
α. Negative values of α correspond to compound Poisson distributions with positive
probability of zero frailty. This is important for some applications when modeling the
time to non-certain events, e.g. divorce or unemployment. The generalization is of no use
in our context where it implies immortality for some individuals. However, it could be
useful for course-speci�c mortality modeling as demonstrated by Aalen (1988).

3 Stochastic frailty models

We �rst include frailty in a continuous-time model spanning multiple birth cohorts and
show the e�ect on the dynamics of age-speci�c death rates over time. Then we add frailty
to stochastic mortality models and discuss estimation and forecasting of the resulting
models.

Again, we start with the multiplicative frailty model. With a slight abuse of notation
we will reuse the notation of Section 2 with an added time parameter. Assume that the
intensity for an individual of age x at time t with frailty z has the form

µ(t, x; z) = z µbase(t, x), (20)

where µbase is a baseline intensity describing the period (time) and age e�ect. The cohort
intensity is then given by

µ(t, x) = E[Z|t, x]µbase(t, x), (21)

where E[Z|t, x] denotes the (conditional) mean frailty of the cohort of age x at time t, i.e.
the cohort born at time t− x.

Assume that all cohorts have the same frailty distribution at birth, and denote the
Laplace transform of this common distribution by L. Let ν(s) = − logL(s), and de�ne
the integrated baseline and cohort intensities as

I(t, x) =

∫ x

0

µbase(u+ t− x, u)du, (22)

H(t, x) =

∫ x

0

µ(u+ t− x, u)du. (23)

That is, we follow a speci�c birth cohort over time and age. We have as before the
relations H(t, x) = ν (I(t, x)) and

E[Z|t, x] = ν ′(I(t, x)) = ν ′ (ν−1 {H(t, x)}
)
. (24)

Following the notation of Bongaarts (2005) we de�ne the rate of improvement in
(senescent) mortality as ρ(t, x) = −∂ log µ(t, x)/∂t. It follows from (21) that

ρ(t, x) = −∂ log E[Z|t, x]
∂t

+ ρbase(t, x), (25)

where ρbase(t, x) = −∂ log µbase(t, x)/∂t denotes the rate of improvement of baseline in-
tensity.
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Suppose we model the period e�ect of mortality improvements by decreasing age-
speci�c baseline mortality, i.e. ρbase > 0. For �xed x, the integrated baseline intensity will
then also be decreasing over time, while the mean frailty will be increasing over time due
to less and less selection. From (25) we see that this implies that the rate of improvement
of cohort mortality will be smaller than the rate of improvement at the individual level.

At old ages where death rates, and thereby selection, is high the change in mean
frailty over time can substantially o�set improvements in baseline mortality causing rates
of improvement of cohort mortality to be close to zero. As improvements continue to occur
at the individual level the selection e�ect gradually disappears and rates of improvement
of cohort mortality get closer to baseline rates of improvement. The resulting pattern of
gradually changing rates of improvement of old-age mortality resembles what is seen in
data. This will be illustrated in the applications in Section 4.

3.1 Data and terminology

Data are assumed to be of the form of death counts, D(t, x), and corresponding expo-
sures, E(t, x), for a range of years, tmin ≤ t ≤ tmax, and ages, xmin ≤ x ≤ xmax. Data
may or may not be gender-speci�c, but that will not be part of the notation. D(t, x)
denotes the number of deaths occurring in calender year t among people aged [x, x+ 1).
Correspondingly, E(t, x) denotes the total number of years lived during calender year t
by people of age [x, x + 1). For readers familiar with the Lexis diagram, D(t, x) counts
the number of deaths in the square [t, t+ 1)× [x, x+ 1) of the Lexis diagram and E(t, x)
gives the corresponding exposure, i.e. we work with so-called A-groups.

From the death counts and exposures we form the observed (empirical) death rates

m(t, x) =
D(t, x)

E(t, x)
. (26)

The death rate is an estimate of the cohort intensity, µ(t, x), which for modeling purposes
is assumed constant over the square [t, t+ 1)× [x, x+ 1) in the following.

3.2 Fragilization of mortality models

Consider as given a stochastic model for baseline mortality, µbase(t, x). For ease of pre-
sentation we will assume that it is of the form

µbase(t, x) = F (θt, ηx), (27)

where θt and ηx are, possibly multi-dimensional, time- and age-dependent quantities and
F describes the functional dependence. We could have included also cohort e�ects and
more general dependence structures if so desired.

The form (27) is chosen with two applications mind: with θt = kt, ηx = (ax, bx) and
F (k, (a, b)) = exp(a + bk) we get the Lee-Carter model; with ηx = x we get parametric
time-series models where the functional form of the age-pro�le is determined by F . In the
parametric case we could use for instance a Gompertz law, F (θt, x) = exp(θ1t + θ2t x), or
a logistic function, F (θt, x) = exp(θ1t + θ2tx)/(1 + exp(θ1t + θ2t x)). The latter is the model
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considered by Cairns et al. (2006) for aggregate mortality. As mentioned in Section 2.1
the logistic model already has a frailty interpretation, and it is therefore not an obvious
candidate for further fragilization; but it can nevertheless be done.

For presentational convenience we assume that both θt and ηx need to be estimated
from data, although as just seen ηx may in fact be �xed. Once estimated we can forecast
θt by ARIMA time-series methods and thereby obtain forecasts of µbase by inserting the
forecasted values of θt together with the estimated values of ηx into (27).

In order to proceed we assume that we have available a procedure for maximum
likelihood estimation of (θt, ηx) in the model where death counts are independent with

D(t, x) ∼ Poisson (µbase(t, x)E(t, x)) . (28)

In the Lee-Carter case such a procedure is described in Brouhns et al. (2002).
With these building blocks in place we now consider the following "fragilized" version

of the baseline model in which death counts are independent with

D(t, x) ∼ Poisson (µ(t, x)E(t, x)) , (29)

µ(t, x) = E[Z|t, x]µbase(t, x), (30)

where µbase is given by (27) and E[Z|t, x] denotes the conditional mean frailty of the cohort
of age x at time t. It is assumed that the frailty distribution at birth is the same for all
cohorts and that the distribution belongs to a family indexed by ϕ. The parameters of
the model are thus (ϕ, θt, ηx). The Laplace transform of the frailty distribution with index
ϕ is denoted Lϕ, and this is assumed available in explicit form. Further, as a matter of
convention we assume that mean frailty is one at birth and we de�ne νϕ = − logLϕ.

Based on (22) and (24) we can write

µ(t, x) = ν ′
ϕ(I(t, x))F (θt, ηx), (31)

I(t, x) =
x−1∑
u=0

F (θu+t−x, ηu), (32)

and insert this into (29). In principle, we can estimate all parameters jointly from the
resulting likelihood function. However, the likelihood function is intractable with frailty
and baseline parameters occurring in a complex mix. Consequently, estimation has to be
handled on a case-by-case basis depending on the choice of frailty and baseline model.
Below we propose an alternative, generally applicable pseudo-likelihood approach which
greatly simpli�es the estimation task.

3.3 Pseudo-likelihood function

From (24) we know that E[Z|t, x] = ν ′ (ν−1 {H(t, x)}), where H is the integrated cohort
intensity µ. At �rst sight this does not seem to help much sinceH is at least as complicated
as I. However, in contrast to I we can obtain a (model free) estimate of H directly from
data as

H̃(t, x) =
x−1∑
u=0

m(u+ t− x, u). (33)
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We thus propose to base estimation of (29)�(30) on a likelihood function in which the term
E[Z|t, x] is replaced by ν ′(ν−1{H̃(t, x)}). The resulting approximate likelihood function
is referred to as the pseudo-likelihood function,4

L(ϕ, θ, η) =
∏
t,x

λ(t, x)D(t,x)

D(t, x)!
exp(−λ(t, x)), (34)

λ(t, x) = ν ′
ϕ(ν

−1
ϕ {H̃(t, x)})F (θt, ηx)E(t, x). (35)

Formally, it corresponds to estimating the modi�ed model

D(t, x) ∼ Poisson (µ(t, x)E(t, x)) , (36)

µ(t, x) = ν ′
ϕ(ν

−1
ϕ {H̃(t, x)})F (θt, ηx). (37)

In model (36)�(37) µ is separable in frailty and baseline parameters and the model is
therefore considerably easier to handle than (29)�(32).5 The separability allows for simple
joint estimation based on the estimation procedure for the baseline model.

One issue remains before turning to estimation in Section 3.4. To form the (pseudo)
likelihood function we need to compute H̃(t, x) for all t and x in the data window. How-
ever, these quantities depend in part on data outside the data window. In principle, we
need to know the death rates from birth to the present/maximum age for all cohorts
entering the estimation. The gray area of Figure 2 illustrates the "missing" death rates.

Data window Forecast

tmin tmax

xmin

xmax

time

age

0
tmin − xmax

Figure 2: Data are available for years between tmin and tmax and for ages between xmin and xmax.

The gray area below and to the left of the data window illustrates the part of the trajectories

needed for calculation of H̃ that falls outside the data window. The shaded area to the right

illustrates the years and ages for which we wish to forecast mortality intensities.

4The idea of basing inference on a pseudo-likelihood function was �rst introduced in spatial statistics,
see Besag (1975).

5Equation (37) might still look daunting, but is simpli�es in speci�c cases. If frailty is assumed Gamma
distributed with variance σ2 (and mean one) we get µ(t, x) = exp(−σ2H̃(t, x))F (θt, ηx), while inverse
Gaussian frailty with variance σ2 (and mean one) yields µ(t, x) = F (θt, ηx)/(1 + σ2H̃(t, x)).
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For the purpose of calculating H̃ we suggest to de�ne the death rates before and below
the data window by

m(t, x) =

{
m(tmin, x) for t < tmin and xmin ≤ x ≤ xmax,

0 for 0 ≤ x < xmin.
(38)

This corresponds to saying that selection prior to tmin have happened according to initial
rates (rather than actual rates), and that all cohorts have mean frailty one at age xmin

(rather than at birth). The latter assumption was also used by Vaupel in the contributed
discussion part of Thatcher (1999). With the extension of death rates H̃ and hence the
likelihood function can be computed.

We note that in some situations, e.g. for many national data sets, we may have more
data than we choose to use for estimation. In these situations some or all of the "missing"
death rates may in fact be available and hence could be used when calculating H̃. In the
present paper, however, we will calculate H̃ using the extension (38) even in this case.
Assuming no selection prior to xmin also makes forecasting more straightforward.

3.4 Maximum likelihood estimation

We here discuss various ways to obtain maximum likelihood estimates of model (36)�(37)
of Section 3.3. For computational e�ciency and numeric stability one often considers the
log-likelihood function (rather than the likelihood function),

l(ϕ, θ, η) = logL(ϕ, θ, η) =
∑
t,x

{D(t, x) log µ(t, x)− µ(t, x)E(t, x)}+ constant, (39)

where µ is given by (37) and the constant depends on data only. The simplest and most
general method to optimize (39) is to form the pro�le log-likelihood function

l(ϕ) = l(ϕ, θ̂(ϕ), η̂(ϕ)), (40)

where θ̂(ϕ) and η̂(ϕ) denote the maximum likelihood estimates of θ and η for �xed frailty
parameter ϕ. Assuming that we know how to perform maximum likelihood estimation of
the baseline model, θ̂(ϕ) and η̂(ϕ) can be obtained by estimating the baseline model with
death counts D(t, x) and exposure ν ′

ϕ(ν
−1
ϕ {H̃(t, x)})E(t, x). Since the frailty family is

typically of low dimension, e.g. one or two dimensions, the pro�le log-likelihood function
can normally be optimized reliably by general purpose optimization routines, e.g. the
optimize or optim routines in the free statistical software package R.

For a one-dimensional frailty family, e.g. Gamma with mean one and variance σ2, we
could use the following skeleton R-code

# model is a list with functions for calculating

# Htilde, mean frailty and MLE of the baseline model

frail.optim <- function(D,E,model) {

Htilde <- model$Htilde(D,E)
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profile.loglike <- function(phi) {

EZ <- model$meanfrail(phi,Htilde)

ret <- model$MLEbase(D,EZ*E)

ret$value # value of maximized log-likelihood

}

optret <- optimize(profile.loglike,interval=c(0,2),maximum=TRUE)

MLEphi <- optret$maximum

EZ <- model$meanfrail(MLEphi,Htilde)

ret <- model$MLEbase(D,EZ*E)

MLEbase <- ret$par # MLE of baseline parameters

list(phi=MLEphi,base=MLEbase)

}

Alternatively, maximum likelihood estimation can also be implemented by a switching
algorithm. Starting from an initial value, ϕ0, of the frailty parameter and i = 1, the algo-
rithm consists in repeating the following two steps until convergence. On each iteration i
is increased by one.

1. Calculate (θi, ηi) as the maximum likelihood estimate with ϕ = ϕi−1 �xed.

2. Calculate ϕi as the maximum likelihood estimate with (θ, η) = (θi, ηi) �xed.

The estimation in the �rst step is, as before, performed by estimating the baseline model
with death counts D(t, x) and exposure ν ′

ϕi−1
(ν−1

ϕi−1
{H̃(t, x)})E(t, x). The estimation in

the second step is performed by maximizing l(ϕ, θi, ηi) as a function of ϕ. With the
dimension of ϕ typically low, this is easy to do by either Newton-Raphson, steepest
ascent, or, in the one-dimensional case, even a simple bisection algorithm.

For the case of Gamma frailty with mean one and variance σ2 we have for l and its
�rst two partial derivatives with respect to σ2

l(σ2, θ, η) =
∑
t,x

{
−σ2DH̃ − exp(−σ2H̃)F (θt, ηx)E

}
+ const.,

∂l

∂σ2
(σ2, θ, η) =

∑
t,x

{
−DH̃ + H̃ exp(−σ2H̃)F (θt, ηx)E

}
,

∂2l

∂(σ2)2
(σ2, θ, η) = −

∑
t,x

H̃2 exp(−σ2H̃)F (θt, ηx)E < 0,

where we have suppressed the dependence on t and x of D, E and H̃ to simplify notation.
The calculations show that l is strictly concave as a function of σ2, and thereby that a
local maximum is also a global maximum. Hence any gradient method is guaranteed to
converge to the global maximum. Note however that the maximum may not be interior
and therefore we do not necessarily have ∂l/∂σ2 = 0 at the maximum.

The switching algorithm will always converge to a (local) maximum. However, many
iterations may be required in particular if the likelihood has a "diagonal" ridge along
frailty and baseline parameters, i.e. if frailty and baseline parameters to some extent
describe the same feature of data. The advantage of the switching algorithm is that it
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allows a more detailed analysis which can guide the choice of optimization routine, like
in the Gamma example above.

We �nally note that estimation can also be carried out by Newton-Raphson sweeps
over frailty and baseline parameters, similar to the algorithm described in Brouhns et al.
(2002) for the Lee-Carter model. This may be more e�cient in terms of computing time,
but it requires a substantial amount of tailor-made code for each combination of frailty
and baseline model.

Overall, we �nd that optimization of the pro�le log-likelihood function is the method
of choice. It is particularly well-suited in the exploratory phase due to its �exibility and
ease of implementation. In our experience it is also su�ciently fast and robust to be of
practical use.

3.5 Forecasting

We now assume that we have (maximum likelihood) estimates of (ϕ, θ, η) and we denote
these by (ϕ̂, θ̂, η̂). We will follow the usual approach in stochastic mortality modeling
and forecast mortality based on a time-series model for (θt). The time-series model is
estimated on the basis of (θ̂t)tmin≤t≤tmax treating these as observed, rather than estimated,
quantities. Typically a simple (multi-dimensional) random walk with drift is used, see
e.g. Lee and Carter (1992) and Cairns et al. (2006), but models with more structure can
also be used.

Assume that we have a forecast (θ̄t)tmax<t≤tmax+h for a given forecast horizon h. The
forecast can be either a deterministic (mean) forecast, or a stochastic realization from
the time-series model. The aim is to forecast baseline and cohort mortality for ages
xmin ≤ x ≤ xmax; the forecast region is illustrated as the shaded box to the right in
Figure 2.

We �rst note that the estimated µ can be written

µ̂(t, x) = ν ′
ϕ̂
(ν−1

ϕ̂
{H̃(t, x)})F (θ̂t, η̂x) = ν ′

ϕ̂
(Ĩ(t, x))F (θ̂t, η̂x), (41)

where Ĩ(t, x) = ν−1

ϕ̂
{H̃(t, x)}. Expressing mean frailty in terms of Ĩ provides the necessary

link for forecasting mean frailty, and thereby cohort mortality.
Baseline mortality is readily forecasted by inserting θ̄ and η̂ into (27),

µbase(t, x) = F (θ̄t, η̂x), (42)

while cohort mortality is forecasted by

µ(t, x) = ν ′
ϕ̂
(Ĩ(t, x))F (θ̄t, η̂x), (43)

where Ĩ in the forecast region is given by the recursion

Ĩ(t, x) =


0 for x = xmin,

Ĩ(tmax, x− 1) + F (θ̂tmax , η̂x−1) for x > xmin, t = tmax + 1,

Ĩ(t− 1, x− 1) + F (θ̄t−1, η̂x−1) for x > xmin, t > tmax + 1.

(44)
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Note that in the data window Ĩ is de�ned by transformation of H̃ to ensure consistency
with the estimated model, while in the forecast region it is de�ned recursively in terms of
the forecasted baseline mortality.

For Gamma frailty with mean one and estimated variance σ̂2 we will forecast cohort
mortality by

µ(t, x) =
F (θ̄t, η̂x)

1 + σ̂2Ĩ(t, x)
, (45)

where Ĩ in the data window is given by Ĩ = [exp(σ̂2H)− 1]/σ̂2. Inverse Gaussian frailty
with mean one and estimated variance σ̂2 yields the cohort mortality forecast

µ(t, x) =
F (θ̄t, η̂x)√

1 + 2σ̂2Ĩ(t, x)
, (46)

where Ĩ in the data window is given by Ĩ = [(1 + σ̂2H)2 − 1]/2σ̂2.

4 Applications to US male mortality

Broadly speaking stochastic mortality models fall in two main categories: parametric
time-series models and semi-parametric models of Lee-Carter type. We consider two
applications, one for each of these model classes. The applications are illustrative examples
highlighting di�erent aspects of the theory rather than full-blown statistical analyses.

In the �rst application we take a standard Makeham mortality intensity and show how
the �t can be improved for di�erent age groups by adding frailty. To give a �avor of the
possibilities we consider models of the generalized, additive form presented in Section 5 in
combination with the two-dimensional family of stable laws of Section 2.2. In the second
application we add Gamma frailty to the Lee-Carter model and illustrate the e�ect on
the forecasts.

Both applications use US male mortality data from 1950�2010 available at the Human
Mortality Database (www.mortality.org). The �rst application compares a forecast based
on the initial half of data with the actual mortality experience. The second application
uses the latter half of data and makes a forecast into the future.

4.1 Parametric time-series application

The classical Makeham, or Gompertz-Makeham, mortality law states that age-speci�c
mortality can be described by the functional form

µ(x) = exp(θ1 + θ2x) + exp(ζ), (47)

where x denotes age. The additive structure suggests an interpretation of mortality as
composed of an age-dependent (senescent) part describing mortality as people grow older,
and a part describing background mortality, e.g. accidents, which happen independent of
age. Despite its simplicity the Makeham intensity provides a reasonable description for
a wide range of adult ages. However, for the very old and also for younger adults the
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description is not adequate. The right panel of Figure 3 shows observed death rates in
1980 for US males aged 20 to 100 with a �tted Makeham curve imposed (and two other
curves which will be explained below). It is seen that the Makeham curve overstates
old-age mortality and that the curvature is wrong for the younger ages.
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Figure 3: Left panel shows a contour plot of the pro�le log-likelihood function, l(α, σ), of model

(48)�(49). The dot marks the maximal value, (α̂, σ̂), and the box marks the maximal value

along the axis α = 0 (Gamma frailty), σ̂Γ. Right panel shows observed death rates in 1980 for

US males aged 20 to 100 with a Makeham �t superimposed. Also shown are the �ts of model

(48)�(49) with optimal Gamma and stable frailty, respectively.

For old-age mortality, the lack of �t of the Makeham law is well-known and logistic-
type models have been proposed instead, see e.g. Thatcher et al. (1998). In Cairns et al.
(2006) a logit-model for death probabilities (rather than rates) is suggested and applied
to England & Wales males above age 60 for which it �ts well. However, in Cairns et al.
(2009) potential problems of �tting US male data with the pure logit-model is reported
and a variant is considered.

4.1.1 Stochastic frailty model

As an alternative to the logit-model and its variants we here consider the stochastic frailty
model

D(t, x) ∼ Poisson (µ(t, x)E(t, x)) , (48)

µ(t, x) = E[Z|t, x] exp(θ1t + θ2t x) + exp(ζt), (49)

where the distribution of Z belongs to the positive stable family with index α ∈ [0, 1) and
variance σ2, described in Section 2.2. The model is of the additive form introduced in
Section 5 with frailty acting only on the senescent part of mortality. With this structure
we keep the interpretation of the second term as background mortality to which everyone
is equally susceptible.
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We recall from Section 2.2 that the stable family includes both Gamma (α = 0) and
inverse Gaussian (α = 1/2) as special cases. Gamma frailty leads to a logistic-type model,
akin to the one used in Thatcher (1999), while values of α greater than zero yield old-age
mortality "in between" logistic and exponential. The Makeham model with time-varying
parameters is also included and corresponds to σ2 = 0 (for all values of α).

We apply the model to US male mortality data for the period 1950�1980 and ages
20�100. The left panel of Figure 3 shows a contour plot of the pro�le log-likelihood
function,

l(α, σ) = logL(α, σ, θ̂(α, σ), η̂(α, σ)), (50)

where L is the pseudo-likelihood function of Section 5.2 and θ̂(α, σ) and η̂(α, σ) denote
the maximum likelihood estimates for �xed value of frailty parameters. The pro�le log-
likelihood function is calculated by the EM-algorithm of Section 5.3.

Interestingly, the pro�le log-likelihood is maximized for (α̂, σ̂2) = (0.434, 11.770). This
implies that the best �t is obtained for a model which is quite far from a logistic form.
A closer look at data reveals why this is the case. The right panel of Figure 3 shows
the observed death rates in 1980 with three �tted curves imposed. The curve labeled
'Makeham with stable frailty' is the one corresponding to the MLE, while the curve
labeled 'Makeham' is the �tted Makeham curve mentioned earlier. If we restrict attention
to Gamma frailty, i.e. maximize the pro�le log-likelihood along the axis α = 0, we �nd
the maximum σ̂2

Γ = 0.113. The corresponding �tted curve is the one labeled 'Makeham
with Gamma frailty'.

Compared to the Makeham curve, the MLE curve gives an improved �t at young ages
and a similar �t at old ages, while the Gamma curve gives an improved �t at old ages
and a similar �t at young ages. Since the exposure is much bigger at young ages than at
old ages the global MLE is the one �tting young ages the best. Ideally we would like a
model which combines the MLE �t for young ages with the Gamma �t at old ages. Note
that the observed death rates are actually decreasing from age 20 to around age 30. This
however cannot be captured by any of the models considered.

4.1.2 Forecast

Figure 4 shows the estimated and forecasted level, θ1, and slope, θ2, parameters of in-
dividual senescent mortality. The forecast is produced as the mean forecast of a �tted
two-dimensional random walk with drift,

θt = θt−1 + ξ + Ut, (51)

where ξ is the drift and Ut are independent, identically distributed two-dimensional normal
variables with mean zero. Qualitatively similar plots hold for the Gamma frailty model
(not shown).

It appears that there is a structural break around 1970 where the annual drift in
level and slope changes. With hindsight we now know that this change was genuine and
that using only the period 1970�1980 would have resulted in a better forecast. Imagine
standing in 1980, however, it is less obvious that we would have used only the last 10
years of data when forecasting. To illustrate the forecast the method would likely have
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produced in 1980 we therefore use the mean forecast based on the average drift for the
full period 1950�1980, as shown in Figure 4.
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Figure 4: The dots show maximum likelihood estimates of level, θ1, and slope, θ2, parameters

of model (48)�(49) with stable frailty. Mean forecasts based on model (51) are shown as solid

lines. 95%-con�dence intervals with and without parameter uncertainty on ξ (drift) are shown

as dashed and solid lines respectively.

Cohort mortality with stable frailty is forecasted by

µ(t, x) = exp(θ̄1t + θ̄2t x)

[
1 +

11.770

1− 0.434
Ĩ(t, x)

]0.434−1

+ exp(ζ̄t), (52)

where θ̄ denotes the mean forecast of θ, cf. Section 5.4. Background mortality shows very
little variation over the data window and is therefore kept �xed at the last value in the
forecast, ζ̄t = ζ̂1980. Similarly, cohort mortality with Gamma frailty is forecasted by

µ(t, x) =
exp(θ̄1t + θ̄2t x)

1 + 0.113Ĩ(t, x)
+ exp(ζ̄t). (53)

The �t and forecast with the two frailty speci�cations are shown in Figure 5 together
with observed death rates from 1950 to 2010. In the data window, the model with stable
frailty is seen to provide a very good �t for all ages except the oldest (age 100), while
Gamma frailty leads to a good �t for all ages above 50, but a poor �t below. None of the
models are able to fully predict the improvements that occurred from 1980 onwards in
particular for ages 60�80. Of the two models the Gamma frailty model does in fact come
closest due to its more log-concave forecasts, cf. the discussion of Gamma versus inverse
Gaussian frailty in Section 2.1.

Overall, the example shows that adding frailty can substantially improve the �t of a
simple baseline model. However, as with all parsimonious models the �t is not perfect,
in particular when we consider an age span as wide as 20 to 100 years. The example also
shows that regarding both �t and forecast of old-age mortality Gamma frailty performs
better than (other) stable frailties.
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4.2 Lee-Carter application

The model of Lee and Carter (1992) assumes a log-bilinear structure of mortality,

log µ(t, x) = ax + bxkt, (54)

where a and b are age-speci�c parameters and k is a time-varying index. The index is
typically modeled as a random walk with drift,

kt = kt−1 + ξ + Ut, (55)

where ξ is the drift and Ut are independent, identically distributed normal variables with
mean zero. The combination of (54) and (55) implies that forecasted age-speci�c death
rates decay exponentially at a constant rate. However, the experience of old-age mortality
has shown increasing rates of improvement in many countries and, consequently, forecasts
based on the Lee-Carter methodology have a tendency to underestimate the actual gains.
In the example to follow we illustrate how the addition of frailty can be used to improve
the forecast of old-age mortality.

We consider the Poisson version of the Lee-Carter model,

D(t, x) ∼ Poisson(exp(ax + bxkt)E(t, x)), (56)

and we use the algorithm of Brouhns et al. (2002) to obtain the maximum likelihood
estimates of the parameters under the usual identi�ability constraints,∑

t

kt = 0 and
∑
x

bx = 1. (57)
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We will use the Lee-Carter model with and without frailty to model mortality for ages
0 to 90, and assume a logistic form for higher ages,6

µ(t, x) =
exp(ct + dtx)

1 + exp(ct + dtx)
for x = 91, . . . , 110. (58)

The extrapolation at the oldest ages is necessary to obtain reliable and stable rates, both
historically where data are sparse and in forecasts. The left panel of Figure 6 shows the
�t in 2010 for the full age-span from 0 to 110 years. The plot illustrates the �exibility and
better �t to data of semi-parametric models, like the Lee-Carter model, over parametric
models like the ones considered in Section 4.1. Parametric models, on the other hand,
generally produce forecasts which better preserve the overall structure of data.

Age

M
or

ta
lit

y 
in

te
ns

ity
 (

µ)

0 20 40 60 80 100

0.
01

%
0.

1%
1%

10
%

10
0%

US male mortality 2010
Observed death rates
Lee−Carter
Lee−Carter with frailty

1960 1980 2000 2020 2040

16
18

20
22

24

Year

R
em

ai
ni

ng
 li

fe
 e

xp
ec

ta
nc

y 
(y

ea
rs

)

US males age 60
Actual life expectancy
Lee−Carter
Lee−Carter with frailty

Figure 6: Left panel shows observed death rates in 2010 for US males ages 0 to 110. The �tted

value for model (60)�(61) without frailty (solid) and with σ̂2 = 0.73 (dashed) are superimposed.

Logistic extension above age 90. Right panel shows actual and forecasted life expectancy for US

males age 60. Forecasts are based on model (60)�(61) without (solid) and with (dashed) frailty

and estimation period 1970�2000. The frailty forecasts are for σ2 = 0.25, 0.5, 1.0 and 1.5 with

higher values of σ2 corresponding to higher forecasts.

The four Lee-Carter forecasts used in the introductory example in Section 1 are pro-
duced as described above. The mean of the index, k̄t, is used for forecasting assuming
an underlying random walk with drift. The period life expectancy used for illustration is
calculated by the following formula with x0 = 60

ex0(t) =

∫ 110

x0

exp

(
−
∫ x

x0

µ(t, ⌊y⌋)dy
)
dx, (59)

where ⌊y⌋ denotes the integer part of y. Arguably, the cohort life expectancy taking future
improvements into account is of more interested in practise. However, for our purposes the
period life expectancy is more useful since it can be compared with the actual experience.

6For each t, ct and dt are estimated by least squares based on the relation logitµ(t, x) = ct+dtx+error,
for ages x = 70, 71, . . . , 90.
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4.2.1 Stochastic frailty model

Consider the following multiplicative stochastic frailty model

D(t, x) ∼ Poisson (µ(t, x)E(t, x)) , (60)

µ(t, x) = E[Z|t, x] exp(ax + bxkt), (61)

where Z is assumed to be Gamma distributed with mean one and variance σ2. Due to
the assumption of Gamma frailty we have the relations

E[Z|t, x] =
(
1 + σ2I(t, x)

)−1
= exp

(
−σ2H(t, x)

)
, (62)

where H and I denote integrated cohort and baseline mortality respectively. For σ2 = 0
we have the ordinary Lee-Carter model.

We will deviate slightly from the theory presented so far and use the period version
of H and I rather than the cohort version previously used. Hence we will replace H by
the quantity

Ȟ(t, x) =
x−1∑
u=0

m(t, u), (63)

when estimating the model. Similarly, we calculate and forecast I by its period version
Ǐ. Note that with the period version we do not need to extend the data window.

In the context of the Lee-Carter model the period version appears to stabilize the
estimates and forecasts, and this is why we use it. We also note that the use of Gamma
frailty on a period basis is consistent with the logistic extension above age 90.

For �xed value of σ2 model (60)�(61) is estimated as an ordinary Lee-Carter model
with exposure exp(−σ2Ȟ(t, x))E(t, x). With the large number of parameters of the Lee-
Carter model the addition of σ2 makes little di�erence for the �t. This is illustrated in
the left panel of Figure 6 where the �t of the Lee-Carter model with and without frailty
is indistinguishable.

Since frailty is introduced with the speci�c aim of improving the forecast we propose
to estimate σ2 with a back-test approach, rather than by maximum likelihood estimation.
Speci�cally, we de�ne the forecast �t by

f(σ2) =
2010∑

t=2001

90∑
x=0

{
D(t, x) log µ(t, x; σ2)− µ(t, x; σ2)E(t, x)

}
, (64)

where µ(t, x;σ2) denotes the forecast of model (60)�(61) estimated with data from 1970�
2000 and ages 0�90 for �xed value of σ2. The model is forecasted as described in Sec-
tion 4.2.2 below. Plotting f shows a unimodal function which is maximized at σ̂2 = 0.73
(plot not shown). The chosen approach is simple and serves as illustration, but many
other choices for measure of �t and data period could have been made.

The right panel of Figure 6 shows the life expectancy of US males age 60 resulting
from the forecast µ(t, x; σ2) for di�erent values of σ2. The impact of frailty is initially
modest but it gradually leads to substantial di�erences. Yet, even the presence of frailty
cannot fully explain the rapid increase in life expectancy of the last decade. Note that the
optimal frailty variance is not the one leading to the highest forecast, but the one giving
the best �t overall for ages 0�90 in the ten years, 2001�2010, following the estimation
period.
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4.2.2 Forecast

Forecasts of model (60)�(61) are obtained by

µ(t, x) =
exp(âx + b̂xk̄t)

1 + σ̂2Ǐ(t, x)
, (65)

where âx, b̂x and σ̂2 denote estimated parameters and k̄t is the forecasted index, ei-
ther deterministic or stochastic. The integrated baseline intensity is given by Ǐ(t, x) =
[exp(σ̂2Ȟ(t, x))− 1]/σ̂2 in the data window and by

Ǐ(t, x) =
x−1∑
u=0

exp(âu + b̂uk̄t) (66)

in the forecast.
The left panel of Figure 7 shows the estimated index for the estimation period 1980�

2010 and frailty variance σ̂2 = 0.73. The estimated index looks close to linear and a
linear forecast seems reasonable. The right panel of Figure 7 shows the corresponding life
expectancy forecast for US males age 60 as the dashed line starting in 2010. The forecast
is almost linear while the ordinary Lee-Carter forecast (solid line) curves downwards over
time. For comparison the plot also shows Lee-Carter forecasts with and without frailty
based on the estimation periods 1950�1980, 1960�1990 and 1970�2000.7 The pattern is
the same with almost linear frailty forecasts and lower, downward-curving Lee-Carter
forecasts. Note that all historic forecasts, both with and without frailty, are below the
actual life expectancy evolution.

The e�ect of frailty in terms of the forecasted age-speci�c death rates is illustrated in
Figure 8. For ages below 70 the Lee-Carter forecasts with and without frailty are almost
identical. For higher ages the frailty e�ect gradually increases and gives rise to the previ-
ously announced curving forecasts. In particular, the frailty forecast predicts substantial
improvements in mortality for the very old over the next 50 years while the ordinary
Lee-Carter forecasts predicts essentially no improvements above age 90. The plot also
illustrates that the forecasted age-pro�le is somewhat distorted. This is a general feature
of semi-parametric methods, like the Lee-Carter model, due to the lack of structure.

History shows that mortality rates generally decline over time, but it also shows chang-
ing rates of improvement. Clearly, there are substantial period e�ects due to medical
breakthroughs, changes in nutrition and working conditions etc., and frailty can at best
be a contributing factor to the observed increasing rates of improvement. Indeed, the
example shows that adding frailty to historic forecasts is not enough to explain the ac-
tual evolution. However, the addition of frailty leads to projected old-age mortality rates
which at least partly accommodate future higher rates of improvement. The resulting
almost linear life expectancy projections resemble the actual experience better than the
downward-curving Lee-Carter forecasts.

7To show the e�ect of the estimation period rather than the level of frailty the same value of σ̂2 = 0.73
is used for all forecasts.

22



1980 2000 2020 2040 2060

−
15

0
−

10
0

−
50

0
50

Year

In
de

x 
(k

)

Data window Forecast

1960 1980 2000 2020 2040 2060

15
20

25
30

Year

R
em

ai
ni

ng
 li

fe
 e

xp
ec

ta
nc

y 
(y

ea
rs

)

US males age 60
Actual life expectancy
Lee−Carter
Lee−Carter with frailty

Figure 7: Left panel shows estimated (dots) and forecasted index, k, of model (60)�(61) with σ̂2 =
0.73 and estimation period 1980�2010. 95%-con�dence intervals with and without parameter

uncertainty on ξ (drift) are shown as dashed and solid lines respectively. Right panel shows

actual and forecasted life expectancy for US males age 60. Forecasts are based on model (60)�

(61) without frailty (solid) and with σ̂2 = 0.73 (dashed) for four di�erent estimation periods,

1950�1980, 1960�1990, 1970�2000 and 1980�2010.

5 Generalized stochastic frailty models

The theory presented in Section 3 allows for estimation and forecasting of multiplicative
frailty models. This is a useful class of models, but it can also be relevant to consider a
larger and more �exible class of additive models with both frailty and non-frailty compo-
nents. With additive models we can distinguish between senescent mortality in�uenced
by frailty and selection and "background" mortality due to e.g. accidents with no selection
e�ects. The class introduced below contains e.g. logistic-type models with constant terms
which is useful when modeling mortality for a wide age span.

In the following we de�ne the class of generalized stochastic frailty models and we
show how to estimate and forecast these models. Additive models complicates the theory
somewhat and we will have to resort to an EM-algorithm for estimation. The exposition
is rather brief and focuses on the areas where the theory di�ers from the one presented
in Section 3. Many of the general remarks still apply, but they will not be repeated here.

The models we consider are based on the underlying assumption that the intensity for
an individual of age x at time t with frailty z is of the form

µ(t, x; z) = z µbase(t, x) + µback(t, x), (67)

where µbase is the baseline intensity in�uenced by individual frailty and µback is the back-
ground mortality common to all individuals independent of their frailty. The cohort
intensity is then given by

µ(t, x) = E[Z|t, x]µbase(t, x) + µback(t, x), (68)
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Figure 8: The dots show observed death rates for US males from 1980 to 2010 for ages 20, 30,

. . ., 100 years. The �t and forecast of model (60)�(61) without frailty (Lee-Carter model) and

σ̂2 = 0.73 are shown as solid and dashed lines respectively. The model is �tted to data from

1980�2010 and ages 0�90. Mortality for higher ages is obtained by logistic extrapolation.

where E[Z|t, x] denotes the (conditional) mean frailty of the cohort of age x at time t, i.e.
the cohort born at time t− x.

Assume that all cohorts have the same frailty distribution at birth and denote its
Laplace transform by L. By a straightforward generalization of the results in Section 2
we have H(t, x) = ν(I(t, x)) and

E[Z|t, x] = ν ′(I(t, x)) = ν ′ (ν−1 {H(t, x)}
)
, (69)

where ν = − logL and

I(t, x) =

∫ x

0

µbase(u+ t− x, u)du, (70)

H(t, x) =

∫ x

0

µ(u+ t− x, u)− µback(u+ t− x, u)du. (71)

Note that in contrast to earlier H is not just the integrated cohort intensity. The frailty
independent part of mortality, µback, needs to be subtracted to get the usual connection
between I and H.

5.1 Model structure

Assume we have models for baseline and background mortality of the form

µbase(t, x) = F (θt, ηx), (72)

µback(t, x) = G(ζt, ωx), (73)
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where θt and ηx together with F describe the period and age e�ects of frailty dependent
mortality, and ζt and ωx together with G describe the period and age e�ects of frailty
independent mortality. All quantities can be multi-dimensional. Further generalizations
are possible, but the chosen structure is su�cient to illustrate the idea.

For ease of presentation we assume that ηx and ωx are to be estimated from data,
but they may in fact be �xed. As a simple example we could use a Gompertz law for
baseline mortality, F (θt, x) = exp(θ1t + θ2tx), and a constant for background mortality,
G(ζt) = exp(ζt). With no frailty this is the Gompertz-Makeham model, and when frailty
is added to baseline mortality we get the logistic-type model used in Section 4.1.

A generalized stochastic frailty model is a model where death counts are independent
with

D(t, x) ∼ Poisson (µ(t, x)E(t, x)) , (74)

µ(t, x) = E[Z|t, x]µbase(t, x) + µback(t, x), (75)

where µbase and µback are given by (72)�(73) and E[Z|t, x] denotes the conditional mean
frailty of the cohort of age x at time t. The frailty distribution at birth is the same for
all cohorts and it is assumed to belong to a family indexed by ϕ. The Laplace transform
of the frailty distribution with index ϕ is denoted Lϕ, and this is assumed available in
explicit form. Further, as a matter of convention we assume that mean frailty is one at
birth and we de�ne νϕ = − logLϕ.

5.2 Pseudo-likelihood function

Estimation will be based on a pseudo-likelihood function in which the problematic term
E[Z|t, x] is replaced by an estimate. This opens for a general, (relatively) easy estimation
procedure which can be implemented whenever the baseline and background models can
be estimated separately.

The idea is to estimate H in the data window by

H̃(t, x, ζ, ω) =
x−1∑
u=0

m̃(u+ t− x, u), (76)

where

m̃(t, x) =


m̃(tmin, x) for t < tmin and xmin ≤ x ≤ xmax,

m(t, x)−G(ζt, ωx) for tmin ≤ t ≤ tmax and xmin ≤ x ≤ xmax,

0 for 0 ≤ x < xmin.

(77)

The reason we need to extend m̃ by (77) is that the summation in (76) falls partly outside
the data window. Apart from the subtraction of background mortality the construction
is the same as in Section 3.3.

Appealing to (69) we propose to base estimation of model (74)�(75) on a likelihood
function in which E[Z|t, x] is replaced by ν ′(ν−1{H̃(t, x, ζ, ω)}). The resulting approximate
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likelihood function is referred to as the pseudo-likelihood function,

L(ϕ, θ, η, ζ, ω) =
∏
t,x

λ(t, x)D(t,x)

D(t, x)!
exp(−λ(t, x)), (78)

λ(t, x) =
[
ν ′
ϕ(ν

−1
ϕ {H̃(t, x, ζ, ω)})F (θt, ηx) +G(ζt, ωx)

]
E(t, x). (79)

Formally, it corresponds to estimating the modi�ed model

D(t, x) ∼ Poisson (µ(t, x)E(t, x)) , (80)

µ(t, x) = ν ′
ϕ(ν

−1
ϕ {H̃(t, x, ζ, ω)})F (θt, ηx) +G(ζt, ωx). (81)

5.3 Maximum likelihood estimation

Maximum likelihood estimates of model (80)�(81) can be obtained by optimization of the
pro�le log-likelihood function,

l(ϕ) = logL(ϕ, θ̂(ϕ), η̂(ϕ), ζ̂(ϕ), ω̂(ϕ)), (82)

where L is given by (78) and θ̂(ϕ), η̂(ϕ), ζ̂(ϕ) and ω̂(ϕ) denote the maximum likelihood
estimates for �xed value of the frailty parameter ϕ. As argued in Section 3.4 the frailty pa-
rameter is typically of low dimension, and the pro�le log-likelihood function can therefore
be optimized by standard optimization routines. The issue remains of how to compute
the pro�le log-likelihood function.

Assume that we have available routines for maximum likelihood estimation of the
baseline and background mortality models separately. Utilizing that model (80)�(81) is
a special case of a competing risks model, we can compute the estimates θ̂(ϕ), η̂(ϕ),
ζ̂(ϕ) and ω̂(ϕ) by the following algorithm. The algorithm is an adapted version of the
EM-algorithm described in Appendix A. Let i = 1 and proceed as follows

1. Choose initial values for baseline and background parameters, θ0, η0, ζ0 and ω0.

2. For all t and x in the data window compute H̃(t, x, ζ i−1, ωi−1) by (76), and let
c(t, x) = ν ′

ϕ(ν
−1
ϕ {H̃(t, x, ζ i−1, ωi−1)}).

3. Calculate θi and ηi as the maximum likelihood estimates for the model

Dbase(t, x) ∼ Poisson (c(t, x)E(t, x)F (θt, ηx)) (83)

with "data"

Dbase(t, x) = D(t, x)
c(t, x)F (θi−1

t , ηi−1
x )

c(t, x)F (θi−1
t , ηi−1

x ) +G(ζ i−1
t , ωi−1

x )
. (84)

4. Calculate ζ i and ωi as the maximum likelihood estimates for the model

Dback(t, x) ∼ Poisson (E(t, x)G(ζt, ωx)) (85)

with "data"

Dback(t, x) = D(t, x)
G(ζ i−1

t , ωi−1
x )

c(t, x)F (θi−1
t , ηi−1

x ) +G(ζ i−1
t , ωi−1

x )
. (86)
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5. Increase i by one.

6. Repeat steps 2�5 until convergence.

Note that the two Poisson models are only formal in the sense that Dbase and Dback are
not integer-valued, see Appendix A for details.

5.4 Forecasting

Forecasting is performed essentially as for the multiplicative case. Assume that we have
maximum likelihood estimates (ϕ̂, θ̂, η̂, ζ̂, ω̂) of model (80)�(81). Also, assume that we
have a forecast, either deterministic or stochastic, (θ̄t, ζ̄t)tmax<t≤tmax+h for a given forecast
horizon h. The aim is to forecast baseline, background and cohort mortality for ages
xmin ≤ x ≤ xmax and years tmax < t ≤ tmax + h.

The estimated intensity can be written

µ̂(t, x) = ν ′
ϕ̂
(Ĩ(t, x))F (θ̂t, η̂x) +G(ζ̂t, ω̂x), (87)

where Ĩ(t, x) = ν−1

ϕ̂
(H̃(t, x, ζ̂, ω̂)). Expressing mean frailty in terms of Ĩ facilitates fore-

casting of cohort mortality as in Section 3.5.
Baseline and background mortality are forecasted by inserting θ̄ and η̂ into (72) and

ζ̄ and ω̂ into (73),

µbase(t, x) = F (θ̄t, η̂x), (88)

µback(t, x) = G(ζ̄t, ω̂x), (89)

while cohort mortality is forecasted by

µ(t, x) = ν ′
ϕ̂
(Ĩ(t, x))F (θ̄t, η̂x) +G(ζ̄t, ω̂x), (90)

where Ĩ in the forecast region is given by recursion (44).
Note that in the data window Ĩ is given by a transformation of observed death rates

with estimated background mortality subtracted, while in the forecast region it is de�ned
recursively in terms of the forecasted baseline mortality. In particular, G does not enter
Ĩ in the forecast.

6 Final remarks

Populations are without doubt heterogeneous. In this paper we have investigated the use
of multiplicative and additive frailty models taking this fact into account. We have shown
how frailty can improve the �t of simple parametric models, and how it can be combined
with the Lee-Carter model to generate more plausible old-age mortality projections. Ob-
viously, frailty on its own is not enough to explain the complex dynamics of mortality,
but the models can help capture certain essential features observed in data, e.g. changing
rates of improvements, otherwise addressed by ad hoc methods.
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Stochastic frailty models as here presented o�er a general way to combine essentially
any frailty distribution with a parametric or semi-parametric baseline model. This sets
the work apart from the typical use of frailty which rely on matching parametric forms
and closed-form expressions.

The proposed pseudo-likelihood approach is easy to implement for multiplicative mod-
els. Additive models are somewhat harder, but they can be handled by use of the EM-
algorithm. In principle, additive models with more than two components, and multiple
sources of frailty, can also be analyzed. However, unless the components target di�erent
segments of data identi�cation might be problematic.

For ease of exposition we have presented the models as single population models.
However, it is often desirable to consider joint models to obtain coherent forecasts for
related populations, e.g. males and females, subpopulations of a given populations, or
similar national populations believed to share a common trend. A number of models of
this type has been proposed, see e.g. Li et al. (2004); Li and Lee (2005); Plat (2009); Biatat
and Currie (2010); Li and Hardy (2011). Apart from notational changes the "fragilization"
methodology can be used in this context also.

The models considered are related to the cohort models of e.g. Renshaw and Haberman
(2006) and Cairns et al. (2009) in the sense that they all focus on the evolution of cohorts
through time. The cohort models are designed to capture the so-called cohort e�ect seen
in some data sets, i.e. the phenomenon that the mortality experience of cohorts born
in certain periods di�er markedly from the experience of neighboring cohorts, see e.g.
Willets (2004); Richards et al. (2006). Cohort e�ects could be incorporated in the present
framework by allowing the frailty distribution to change over time.

We generally rely on maximum likelihood estimation for determining parameter values.
However, if the primary aim is mortality projection it can be argued that some parameters,
e.g. frailty parameters, should not be determined solely on the basis of historic �t but
rather on their forecast ability. We gave an example of how this could be done in the Lee-
Carter application, but a more systematic analysis of how best to determine the frailty
distribution remains to be done.
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A Estimation of competing risks model

Consider the competing risks model

D(x) ∼ Poisson (E(x)[µ1(α, x) + µ2(β, x)]) , (91)

where D and E denote, respectively, death counts and exposures indexed by age x, and
µ1 and µ2 are mortality intensities with parameters α and β respectively. For notational
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simplicity we do not include time and we not specify exactly how the parameters enter
the two mortality intensities. Apart from notational changes these omissions are of no
consequences for the following discussion.

The interpretation of model (91) is that persons of age x can die from two di�erent,
independent sources with intensities µ1 and µ2 respectively. The structure is natural to
consider in many contexts, but the likelihood function is complicated and direct esti-
mation of α and β can be di�cult. This appendix describes how maximum likelihood
estimation can be implemented by the EM-algorithm of Dempster et al. (1977) assuming
each individual model can be estimated. The following is a standard application of the
EM-algorithm, but since we rely on it in Section 5 we here give a brief self-contained
exposition for ease of reference.

The EM-algorithm is an algorithm for maximum likelihood estimation for incomplete,
or missing, data. It consists of an E-step in which the expectation of the full log-likelihood
is computed with respect to the missing data, followed by an M-step in which the expecta-
tion is maximized with respect to the parameters. The steps are iterated till convergence.

Imagine in the present setup that deaths had been recorded according to source such
that

D1(x) ∼ Poisson (E(x)µ1(α, x)) , (92)

D2(x) ∼ Poisson (E(x)µ2(β, x)) , (93)

with D1(x) and D2(x) independent and D(x) = D1(x) + D2(x). Then D(x) would be
distributed according to (91) and estimation of α and β would be easy. The full log-
likelihood function is given by

l(α, β;D1, D2) = l1(α;D1) + l2(β;D2), (94)

where (omitting x for ease of notation)

l1(α;D1) =
∑
x

{D1 log µ1(α)− Eµ1(α)}+ constant, (95)

l2(β;D2) =
∑
x

{D2 log µ2(β)− Eµ2(β)}+ constant. (96)

Even though D1 and D2 do not necessarily exist and hence are not "missing" in the
normal sense of the word, we can still use the EM-algorithm based on the missing data
interpretation of the model. The algorithm is as follows:

Choose initial values α0 and β0 for the parameters.

E-step Treat D1 and D2 as missing data and compute the expected value of the full
log-likelihood given data D and current parameter estimates

Q(α, β) = E[l(α, β;D1, D2)|D,αi−1, βi−1], (97)

where

D1|D,αi−1, βi−1 ∼ Binom

(
D,

µ1(αi−1)

µ1(αi−1) + µ2(βi−1)

)
, (98)

D2|D,αi−1, βi−1 ∼ Binom

(
D,

µ2(βi−1)

µ1(αi−1) + µ2(βi−1)

)
. (99)
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M-step Maximize Q to obtain new estimates αi and βi.

Iterate E-step and M-step until parameter estimates converge.

Both the E-step and the M-step are easy to perform. The E-step merely consists
of replacing D1 and D2 in (95)�(96) by their conditional expectations, and the M-step
consists in estimating the two marginal models. Formally, the EM-algorithm corresponds
to iteratively estimating the models (92)�(93) with "data"

D1(x) = D(x)
µ1(αi−1, x)

µ1(αi−1, x) + µ2(βi−1, x)
, (100)

D2(x) = D(x)
µ2(βi−1, x)

µ1(αi−1, x) + µ2(βi−1, x)
. (101)

On each iteration "data" are updated according to the latest estimate and the parameters
reestimated. Note, this holds only formally since D1 and D2 computed above are not
integer-valued.

It can be shown that the likelihood is increased in each step of the EM-algorithm. The
algorithm hence converges to a local maximum, but it can be rather slow. The advantage
is that we can use the same algorithm to estimate all combinations of models as long as
we know how to estimate the models separately. It is also straightforward to generalize
the algorithm to more than two competing risks.
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