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Abstract
We present a modified verification theorem for the equilibrium control of a general
class of portfolio problems. The general class of portfolio problems studied in this
paper, is characterized by an objective where the investor seeks to maximize a func-
tional of two conditional expectations of terminal wealth. The objective functional is
allowed to be non-linear in the conditional expectations, and thus the problem class is
in general terms time-inconsistent. In addition, we provide a corrected proof of the ver-
ification theorem and apply the theorem to a number of quadratic, time-inconsistent
portfolio problems and determine their solutions. Some of the quadratic portfolio
problems have not previously been solved analytically.

Keywords Time-inconsistency · Quadratic portfolio problems · Optimal control ·
Equilibrium control laws

1 Introduction

In this paper we study portfolio problems where the investor seeks to maximize the
functional
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f (t, x, Et,x [g(Xπ (T ))], Et,x [h(Xπ (T )])), (1)

for some functions f , g, h and where t denotes time, x denotes wealth at time t
and Xπ (T ) express the stochastic terminal wealth at time T under the control π . The
novelty of the problem class presented by the objective in Eq. (1), is the possibility of a
non-linear structure between the two conditional expectations. The extended problem
class was originally presented in Kryger and Steffensen (2010).

In the present paper, we provide a modified version of the verification theorem
first introduced in Kryger and Steffensen (2010). The theorem provides verification of
the equilibrium control law of the investor who wishes to dynamically maximize the
functional in Eq. (1). The new representation of the theorem is expressed in terms of
equilibrium control laws, a concept originally introduced inBjörk andMurgoci (2010),
and in addition provides a more compact pseudo-Bellman equation than the original
theorem presented in Kryger and Steffensen (2010). The new theorem is simpler to
apply, sincewehave eliminated a double-specificationof the value function. In addition
to the new theorem, we solve a number of quadratic investment problems, some of
which have not previously been solved analytically. Finally, we provide a corrected
proof of the verification theorem, following the equilibrium reasoning of Björk and
Murgoci (2010). Thus, compared to the unpublished (but electronically available)
paper Kryger and Steffensen (2010) we provide here a modified result including a
corrected proof and offer a series of new examples.

We present the examples in a compendium-type manner in order to provide a
complete picture of the structures of problems and their solutions. With this approach,
we include both some examples that make little economic sense because the resulting
investment strategies have undesirable properties from a practical point of view, and
some (other) examples where we do not have existence and uniqueness results. In the
latter cases, we only solve the problems up to a system of ODE’s for which we do
not provide existence and uniqueness results. These examples are included to make
the compendium of problems and related solutions more complete. We discuss for
each example its impact, and in concrete examples the lack of impact due to either
undesirable economic properties or lack of existence and uniqueness results.

The game theoretic approach to time-inconsistent investment problems was first
suggested by Strotz (1955). The approach was formally defined by Björk andMurgoci
(2010) in a general Markovian framework. In traditional portfolio optimization over
terminal wealth, Xπ (T ), we are able to apply the standard dynamic programming
principle and determine the investment strategy, π∗(t), which achieves the supremum

sup
π

Et,x [F(Xπ (T ))].

In Björk and Murgoci (2010), the optimization problem over terminal wealth was
extended to cover an investor who seeks to maximize the functional

Et,x [F(t, x, Xπ (T ))] + G(t, x, Et,x [Xπ (T )]), (2)
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Optimal control of an objective functional with…

(noting that Björk andMurgoci (2010) originally also includes optimization over con-
sumption). The new objective introduces time-inconsistent preferences and Björk and
Murgoci (2010) present a new formal definition of a dynamically optimal investment
strategy; the equilibrium control law. As commented in Björk and Murgoci (2010),
one might trivially introduce a function g inside the conditional mean of their G-
function in Eq. (2). We consider the equilibrium control law as a meaningful solution
to the non-standard time-inconsistent investment problem and the game theoretical
foundations for interpretation of the non-standard problem is taken for given in our
presentation.We refer toBjörk andMurgoci (2010) formore theoretical considerations
in this respect.

The objective considered in the present study covers a number of mean–
variance-related portfolio problems. Portfolio optimization with time-inconsistent
mean–variance preferences has been studied extensively in a variety of different
settings in the last decade. The dynamic mean–variance problem was first solved
informally in a backward recursion manner in an incomplete market setting in Basak
and Chabakauri (2010) and as a special case of the formal disposition of Björk and
Murgoci (2010). Following these two papers, the mean–variance objective has been
studied in numerous different set-ups. Wang and Forsyth (2011) studied the problem
including constraints to the investment policy. Zeng and Li (2011) consider mean–
variance optimization of investment and reinsurance policies from the perspective
of insurers. Czichowsky (2013) exploit the linear-quadratic structure of the mean–
variance problem and present a formal way to handle a setting more general than the
Markovian of the present paper and how to apply martingale techniques. Interestingly,
Czichowsky (2013) shows that non-uniqueness of the optimal strategy can exist in
markets more general than the one we study. A more general mean–variance setting
is introduced in Björk et al. (2014), whereas Björk and Murgoci (2014) is devoted
to a complete analysis of the problem formulation and solution in discrete time. Wu
(2013) determines the equilibrium value function for the mean–variance investor in
discrete time with constant and wealth-dependent risk aversion respectively. In Wei
et al. (2013) themean–variance portfolio is determined in a settingwith regime switch-
ing. In Bensoussan et al. (2014) it is discovered how the discrete-time version of the
mean–variance investor with wealth-dependent risk aversion leads to an unbounded
value function, why they solve a discrete-time problem with the inclusion of short-
selling constraints. Wu et al. (2015) studies mean–variance optimization in the context
of Defined Contributions (DC) pension fund management with the inclusion of infla-
tion risk and salary risk. Similarly, in Sun et al. (2016) the cases of the pre-committed
investor as well as the equilibrium strategy are determined for a DC pension plan in a
market where the risky asset is modelled by a jump-diffusion. Their results show how
the behaviour of the optimally controlled wealth is fundamentally different, depend-
ing on the approach to optimization. In the present paper, we work exclusively with
equilibrium strategies and the resulting wealth dynamics. A different extension to the
problem class in the mean–variance setting was studied in Zhang and Liang (2016)
with the inclusion of jumps in the risky asset. Bannister et al. (2016) consider the
mean–standard-deviation investor in the case where the investor only has access to
risky investments in a multiperiod set-up. However, time-inconsistency arise through
other objectives than the mean–variance optimization. Björk et al. (2017) work with

123

Author's personal copy



E. Kryger

an objective similar to the one by Björk and Murgoci (2010) and provide new exam-
ples, including one with a general market equilibrium, such that there are actually
two ’dimensions’ of the equilibrium, intrapersonal (but intertemporal) equilibrium,
and (interpersonel among agents) market equilibrium in a usual asset pricing theo-
retical sense. Hu et al. (2017) study time-inconsistent linear-quadratic problems with
stochastic (market) coefficients. Their complete market example is a special case of
our example called generalized mean–variance criterion. In Ekeland et al. (2012) the
inclusion of life-insurance and different utility of the investor and heirs in combination
with hyperbolic discounting is considered. In Kronborg and Steffensen (2015) a prob-
lem similar to the one in the present paper, but with the inclusion of consumption and
labour income and restricted to the functions g(x) = x and h(x) = x2, is presented.

The main contribution of the present paper is to present a new representation and
proof of the verification result for the equilibrium strategy of the extended problem
class, defined by the objective in Eq. (1). In addition, we present the solutions to a
broad class of portfolio problems with quadratic objectives, some to which existing
mean–variance optimization results are special cases and some new objectives with
non-linearity in the conditional expectations. We also present the repeated structure
of the analytical solutions to portfolio problems with quadratic objectives.

2 Themain result

We consider a market consisting of a bond and a stock with dynamics given by

dB (t) = r B (t) dt, B (0) = 1,

dS (t) = αS (t) dt + σ S (t) dW (t) , S (0) = s0 > 0,

with r < α and α, σ > 0.W is a standard Brownian motion on an abstract probability
space (�,F,P) equippedwith a filtrationF = (Ft )t≥0 satisfying the usual conditions;
and with each Ft ⊆ σ {W (s), 0 ≤ s ≤ t}. Further we define θ = (α − r) /σ , the
market price of risk.

We consider an investor, who places the proportion π (t) of his wealth in the stock
at time t . Denoting by Xπ (t) his wealth at time t given the investment strategy π , the
dynamics of his wealth becomes

dXπ (t) = (r + π (t) (α − r)) Xπ (t) dt + π (t) σ Xπ (t) dW (t) ,

Xπ (0) = x0 > 0,

where x0 is the initial wealth. The strategy is self-financing in the sense that we
disregard consumption and injection of capital.

Before introducing the objective, we introduce two conditional expectations

yπ (t, x) := Et,x
[
g

(
Xπ (T )

)]
, (3)

zπ (t, x) := Et,x
[
h

(
Xπ (T )

)]
, (4)

123

Author's personal copy
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for functions g and h. The subscript t, x denotes conditioning on the event Xπ (t) = x .
The objective of the investor, considered in this study, is to maximize the value

function
Jπ (t, x) := f

(
t, x, yπ (t, x) , zπ (t, x)

)
, (5)

defined through a given regular function f ∈ C1,2,2,2, and to find the corresponding
optimal investment strategy, π∗. We denote the optimal value function by V (t, x) :=
Jπ∗

(t, x). As opposed to Björk and Murgoci (2010) we only treat problems over
terminal wealth. Also, we restrict ourselves to the (one-dimensional) Black–Scholes
market.

The portfolio problem presented in Eq. (5) is, in its general form, not a classical
time consistent portfolio problem. If we fix a point in time, (t0, x0), and determine the
future investment strategy, π̄0(t, x) for all (t, x) ∈ [t0, T ] × R, which maximizes the
value function today, in the sense that J π̄0(t0, x0) = supπ Jπ (t0, x0), then, when we
at a later point in time, (t1, x1), perform the same exercise and determine the strategy
π̄1(t, x) for all (t, x) ∈ [t1, T ] × R, which achieves J π̄1(t1, x1) = supπ Jπ (t1, x1),
we do not (necessarily) find that π̄0(t, x) = π̄1(t, x) for all (t, x) ∈ [t1, T ] × R.
In conclusion, the (future) strategy which is optimal when maximizing the objective
today is not necessarily optimal tomorrow. We have a time-inconsistent investment
problem.

If f does not depend on (t, x, zπ (t, x)) and is affine in yπ (t, x), the problem can
be written in a classical way, and the objective of the investor is to determine

sup
π

Et,x
[
g

(
Xπ (T )

)] + constant. (6)

In this case, we are able to determine a time consistent investment strategy which
achieves the supremum, since we are able to exploit the law of iterated expectations
and thus the Bellman optimality principle applies.

Due to the time-inconsistent preferences specified through the objective in Eq. (5),
it is in the general case not sufficient to determine the (current) investment strategy that
will reach the true supremum of the value function. As explained above, the investor
continuously deviates from this strategy and thus does not actually achieve any of the
determined supremums (in expectation). Instead, we seek to determine the equilibrium
control law, as introduced in Björk and Murgoci (2010). We state the definition here
and denote by U ∈ R the set for which the controls πh defined below are admissible
in the sense of Definition 2.

Definition 1 (Equilibrium control law) Consider a control law π̂ (informally viewed
as a candidate equilibrium law). Choose a fixed π ∈ U and a real number h > 0. Also,
fix an arbitrarily chosen initial point (t, x). Define the control law π̂h by

π̂h(s, y) =
{

π for (s, y) ∈ [t, t + h) × R,

π̂(s, y) for (s, y) ∈ [t + h, T ] × R.

If

lim inf
h→0

J π̂ (t, x) − J π̂h (t, x)

h
≥ 0,
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for all π ∈ U , then we say that π̂ is an equilibrium control law.

Remark 1 By definition of π∗
h we have the relation

Jπ∗
(t + h, x) = Jπ∗

h (t + h, x).

As a result, we may write

Jπ∗
(t, x) − Jπ∗

h (t, x)

h

= Jπ∗
(t, x) − Jπ∗

(t + h, x) − (Jπ∗
h (t, x) − Jπ∗

h (t + h, x))

h

= J
π∗
h

t − Jπ∗
t + o(h).

With the equilibrium control law,we determine the investment strategywhich at any
point in time (t, x)maximizes the present objective of the investor, under the restriction
that the future strategy is taken for given. The strategy is determined through backward
recursion and in the rest of the paper we refer to the equilibrium control law as the
optimal control.

The problem in Eq. (5) is, at first glance, just a mathematical abstract generalization
of the problem (6). However, as we argue below, there are examples of this generaliza-
tion that make good economic sense. Truly, there are also examples of (5) that make
no economic sense. But this is not an argument against solving (5) in its generality, as
long as we have some interesting and useful applications in mind.

Here we present a list of such motivating examples, which we solve in Sects. 4.1–
4.5. The examples are presented through the objective the investor wishes to maximize
in the equilibrium sense introduced above.

1. Generalized mean–variance optimization

(l1(t)x + l2(t)) Et,x
[
Xπ (T )

] − 1

2
Et,x

[(
Xπ (T ) − k(t)Et,x

[
Xπ (T )

])2]
,

for some functions l1, l2 and k.
There is additivity in the terms involving the first and second order moment and if
l1(t) = 0 and l2 and k do not depend on t , then the functional the investor seeks to
maximize does not depend on (t, x). There is linearity in the second ordermoment,
but the non-linearity in the first order moment makes the problem non-standard.
This is the problem treated by Basak and Chabakauri (2010) in an incomplete
market framework. The objective is studied as a special (the simplest) case by
Björk and Murgoci (2010). The case of l1(t) = 1

γ
for some constant γ > 0 and

l2(t) = 0 is investigated by Björk et al. (2014). The complete market example
provided by Hu et al. (2017) corresponds to letting l1 and l2 be constants and
k = 1.
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2. Endogenous habit formation mean–variance style

(l1(t)x + l2(t)) Et,x
[
Xπ (T )

] − 1

2
Et,x

[(
Xπ (T ) − xk (t)

)2]
,

for some functions l1, l2, k.
We provide the full solution to this problem although the case can also be covered
using the verification theorem of Björk and Murgoci (2010).

3. Generalized mean–standard-deviation optimization

l2(t)Et,x [X (T )] −
(
Et,x

[(
Xπ (T ) − k(t)Et,x

[
Xπ (T )

])2])
1
2
,

for some functions l2, k.
4. Endogenous habit formation mean–standard-deviation style

l2(t)Et,x
[
Xπ (T )

] −
(
Et,x

[(
Xπ (T ) − xk (t)

)2])
1
2
.

for some functions l2, k.
5. Scaled mean–variance optimization

l2(t)Et,x
[
Xπ (T )

] − 1

2

Vart,x [Xπ (T )]

Et,x [Xπ (T )]
,

for some function l2.

Due to the non-additivity in the terms involving the first and second order moment
in the objective functional of the investor presented in points 3., 4., and 5., these cases
are not covered by the verification result of Björk and Murgoci (2010). One can come
up with several other interesting examples, e.g. collective utility of heterogeneous
investors Kryger and Steffensen (2010), but the above cases are the only ones studied
in the present paper.

The result that facilitates the solution of this new class of problems is presented in
the following theorem. First however, we require a definition of an admissible strategy
to which the value function of the objective exists.

Definition 2 (Admissibility) Consider an arbitrary strategy π . If there exists functions
Y π (t, x) , Zπ (t, x) ∈ C1,2 such that

Y π
t = − (r + π (α − r)) xY π

x − 1

2
σ 2 (π)2 x2Y π

xx , (7)

Y π (T , x) = g (x) , (8)

and

Zπ
t = − (r + π (α − r)) x Zπ

x − 1

2
σ 2 (

π∗)2 x2Zπ
xx , (9)
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Zπ (T , x) = h (x) , (10)

and such that the processes

σπ(s)Xπ (s)Y π
x (s, Xπ (s)), (11)

σπ(s)Xπ (s)Zπ
x (s, Xπ (s)) (12)

are inL2 and such that the function f̄ (t, x) := f (t, x,Y π (t, x) , Zπ (t, x)) is inC1,2,
then the strategy π is called admissible w.r.t. the functions Y π (t, x) and Zπ (t, x).

Theorem 1 Let f : [0, T ] × R
3 → R be a continuous function. Let g and h be

real functions. The set of admissible strategies are given by Definition 2. Note that
admissibility depends on the choice of g, h.

Consider the investor with value function

Jπ (t, x) := f
(
t, x, yπ (t, x) , zπ (t, x)

)

with

yπ (t, x) = Et,x
[
g

(
Xπ (T )

)]
,

zπ (t, x) = Et,x
[
h

(
Xπ (T )

)]
.

Denote by V (t, x) the optimal value function in the sense of an equilibrium control
law of Definition 1.

If there exist two functions G, H ∈ C1,2 such that the control law

π∗ = arg inf
π

[
− (r + π (α − r)) x

(
fyGx + fz Hx

) − 1

2
σ 2π2x2

(
fyGxx + fz Hxx

)]
,

(13)

is an admissible strategy w.r.t. G, and H, then

yπ∗
(t, x) = G (t, x) , zπ

∗
(t, x) = H (t, x) ,

and the optimal investment strategy is given by π∗, and the optimal value function is
determined by

V (t, x) = f (t, x,G(t, x), H(t, x)) . (14)

Proof See the “Appendix”.

We find the optimizing investment strategy in terms of the functions f ,G and H
by differentiating with respect to π inside the square brackets of Eq. (13) and get

π∗ = −α − r

σ 2x
· fyGx + fz Hx

fyGxx + fz Hxx
, (15)

providing ( fyGxx + fz Hxx ) < 0.
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Remark 2 The theorem can easily be extended to cover more than two transformations
of terminal wealth:

Jπ (t, x) = f
(
t, x, yπ

1 (t, x), . . . , yπ
n (t, x)

)
,

for yπ
i = Et,x [gi (Xπ (T ))].

Remark 3 The standard case can be formalized by

f (t, x, y, z) = y.

Then the result collapses into a standard Bellman equation. This is concluded since

ft = fx = fz = 0,

and the differential equation for G in this case corresponds to the traditional Bellman
equation since V = G.

Remark 4 We immediately observe that the optimal value function V , specified in
Eq. (14) of Theorem 1, satisfies the pseudo-Bellman equation

Vt − ft = inf
π

[
− (r + π (α − r)) x

(
fyGx + fz Hx

) − 1

2
σ 2π2x2

(
fyGxx + fz Hxx

)
]

.

(16)

This is a direct result of differentiating V by use of the chain-rule and the fact that G
and H satisfy the system of PDE’s given in Eqs. (7)–(10) with π∗ defined in Eq. (13).
A similar representation is found in Björk et al. (2014) in the special case of mean–
variance optimization with t-dependent γ .

Remark 5 We further observe that the pseudo-Bellman equation in (16) can be written
as

Vt − ft = inf
π

[
− (r + π (α − r)) x (Vx − fx ) − 1

2
σ 2π2x2 (Vxx −U )

]
,

with U := fxx + 2 fxyGx + 2 fxz Hx + fyyG2
x + 2 fyzGx Hx + fzz H2

x . This repre-
sentation corresponds to the pseudo-Bellman equation originally presented in Kryger
and Steffensen (2010). The representation is a direct consequence of the chain-rule
applied to V (t, x) = f (t, x,G(t, x), H(t, x)).

Remark 6 We finally observe that in comparison the pseudo-Bellman equation intro-
duced in Björk andMurgoci (2010) (for the case without consumption) wewould have
fz = 1 and in addition fxz = fyz = fzz = 0.

In the next sections, we solve the problems listed above. First, we observe that the
structure of the solutions repeats itself. Therefore, in Section 3, we first introduce the
solution structure in general terms. Next, we present the specific solutions to the cases
listed above in Sect. 4.
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3 Repeated structure of the solutions

In Sect. 4 we present the solutions to the problems from the list in Sect. 2. In all of the
cases we have the functions g(x) = x and h(x) = x2 and we search for a solution in
the form

G (t, x) = a(t)x + b(t), (17)

H(t, x) = c(t)x2 + d(t)x + e(t), (18)

with terminal conditions a(T ) = c(T ) = 1 and b(T ) = d(T ) = e(T ) = 0 and the
requirement H(t, x) ≥ 0. The partial derivatives are

Gt = at x + bt , Gx = a(t), Gxx = 0,

Ht = ct x
2 + dt x + et , Hx = 2c(t)x + d(t), Hxx = 2c(t).

With this guess, the optimal investment candidate from Eq. (15) becomes

π∗(t, x)x = −α − r

σ 2

(
1

2

fy
fz

a(t)

c(t)
+ x + 1

2

d(t)

c(t)

)
, (19)

where the partial derivatives of f have arguments (t, x,G(t, x), H(t, x)) In the fol-
lowing cases, our guess is always covered by the specification in Eqs. (17)–(18) and
thus we return to the general specification of π∗ in Eq. (19) again and again. In order
for π∗(t) in Eq. (19) to realize the infimum in Eq. (13), we must have fz2c(t) < 0.
This condition is checked in all of the following cases.

3.1 Special case: when�∗(t, x)x is affine in x

In addition, we highlight the general case where the optimal strategy from Eq. (19)
turns out to be in the form

π∗(t, x)x = p1(t)x + p2(t), (20)

when the partial derivatives fy , fz are inserted. When plugging the optimal strat-
egy from Eq. (20) and the partial derivatives corresponding to the general guess of
Eqs. (17)–(18) into the PDE’s in Eqs. (7) and (9) of Definition 2, we see that it is
possible to separate the resulting system into a highly non-linear system of ODE’s by
isolating the different x-dependences. We arrive at

at = − [r + p1(t)(α − r)]a(t), (21)

bt = − p2(t)(α − r)a(t), (22)

ct = − [2r + 2(α − r)p1(t) + σ 2 p21(t)]c(t), (23)

dt = − [r + (α − r)p1(t)]d(t) − [2(α − r)p2(t) + 2σ 2 p1(t)p2(t)]c(t), (24)

et = − (α − r)p2(t)d(t) − σ 2c(t)p22(t), (25)

123

Author's personal copy



Optimal control of an objective functional with…

with terminal conditions a(T ) = c(T ) = 1 and b(T ) = d(T ) = e(T ) = 0. We
note that the functions p1 and p2 themselves have to be determined and are expressed
in terms of a, b, c, d and e. Therefore, the seemingly linear structure of (21)–(25)
is, actually, in general highly non-linear and becomes only linear in a few concrete
cases. Existence and uniqueness of an optimal control is, in each case studied below,
essentially equivalent to existence and uniqueness of a solution to the—generally
non-linear—system of ODEs, (21)–(25). To arrive at the system (21)–(25) it is simply
required that π∗(t, x) can be specified as in Eq. (20) for some functions p1, p2. As it
turns out, this structure is repeated in all of the cases covered in Sects. 4.1–4.5.

3.1.1 Solution when�∗(t, x)x = p2(t)

It is immediately seen, that if p1(t) = 0, then the system in Eqs. (21)–(25) reduces to
having solution c(t) = a2(t) and d(t) = 2a(t)b(t) with

at = − ra(t), a(T ) = 1,

bt = − p2(t)(α − r)a(t), b(T ) = 0,

et = − 2(α − r)p2(t)a(t)b(t) − σ 2 p22(t)a
2(t), e(T ) = 0.

By defining ε(t) := e(t)−b2(t) we are able to write the system even more compactly
as

bt = − p2(t)(α − r)a(t), b(T ) = 0, (26)

εt = − σ 2 p22(t)a
2(t), ε(T ) = 0, (27)

with

a(t) =er(T−t). (28)

As a result, we conclude that whenever the candidate for the optimal investment
strategy can be written in the form in Eq. (20), and when the guess c(t) = a2(t)
and d(t) = 2a(t)b(t) results in p1(t) = 0, then the optimal investment strategy is
determined by solving the ODE system in Eqs. (26)–(28). We recall that in the special
case of this section, we have π∗(t, x)x = p2(t) by Eq. (20).

The above system can thus also be expressed in terms of the optimal strategy by

bt = − π∗(t, x)x(α − r)a(t), b(T ) = 0,

εt = − σ 2(π∗(t, x)x)2a2(t), ε(T ) = 0.

3.1.2 Solution when�∗(t, x)x = p1(t)x

It is immediately seen, that if p2(t) = 0, then b(t) = e(t) = 0 and the system in
Eqs. (21)–(25) reduces to

at = − [r + π∗(t)(α − r)]a(t), a(T ) = 1, (29)
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ct = − [2r + 2(α − r)π∗(t) + σ 2(π∗(t))2]c(t), c(T ) = 1, (30)

and in addition

dt = − [r + (α − r)π∗(t)]d(t), d(T ) = 0,

where the guess d(t) = 0 is a solution. As a result, we conclude that whenever the
candidate for the optimal investment strategy can be written in the form in Eq. (20),
and when the guess b(t) = e(t) = d(t) = 0 results in p2(t) = 0, then the optimal
investment strategy is simply determined by solving theODE system inEqs. (29)–(30).

4 Cases

In this section, we present the solutions to the problems presented in the list above.

4.1 Generalizedmean–variance

In this subsection, we consider the optimization problem where the investor wishes to
maximize

(l1(t)x + l2(t)) Et,x
[
Xπ (T )

] − 1

2
Et,x

[(
Xπ (T ) − k(t)Et,x

[
Xπ (T )

])2]
,

for some functions l1, l2 and k. The solution to this problem, when k(t) = 1 and
l1(t) = 0 and l2(t) = 1

γ
, was found by Basak and Chabakauri (2010) in a relatively

general incomplete market. Björk and Murgoci (2010) also give the solution as an
example of their extended HJB equation. The solution when k(t) = 1 and l1(t) = 1

γ
and l2(t) = 0 was derived in Björk et al. (2014). We retrieve their results as special
cases in the following subsections.

In the general form, the problem is specified through the f -function

f (t, x, y, z) = (l1(t)x + l2(t)) y − 1

2

(
z − (2 − k(t))k(t)y2

)
, (31)

fy = (l1(t)x + l2(t)) + (2 − k(t))k(t)y, (32)

fz = −1

2
, (33)

and functions g(x) = x and h(x) = x2.
We search for a solution in the form

G (t, x) = a(t)x + b(t),

H(t, x) = c(t)x2 + d(t)x + e(t).
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We recall that the solution requires H(t, x) ≥ 0, for the sample space of the
wealth, resulting from the optimal investment strategy. The candidate optimal strategy
is determined by plugging the partial derivatives of f fromEqs. (32)–(33) intoEq. (19).

We arrive at a strategy in the general form specified in Eq. (20) with

p1(t) =α − r

σ 2

(
l1(t)

a(t)

c(t)
+ (2 − k(t))k(t)

a2(t)

c(t)
− 1

)
, (34)

p2(t) =α − r

σ 2

(
l2(t)

a(t)

c(t)
+ (2 − k(t))k(t)

a(t)b(t)

c(t)
− 1

2

d(t)

c(t)

)
. (35)

In addition,we see thatπ∗(t) realizes the infimumofEq. (13), providing−c(t) < 0.

4.1.1 Mean–variance (l1(t) = 0, l2(t) = 1
� and k(t) = 1)

In the case with l1(t) = 0, l2(t) = 1
γ

> 0 and k(t) = 1, the investor wishes to
maximize the mean–variance objective

Et,x
[
Xπ (T )

] − γ

2
Vart,x

[
Xπ (T )

]
,

and we have

p1(t) =α − r

σ 2

(
a2(t)

c(t)
− 1

)
, (36)

p2(t) =α − r

σ 2

(
1

γ

a(t)

c(t)
+ a(t)b(t)

c(t)
− 1

2

d(t)

c(t)

)
. (37)

We immediately see, that if c(t) = a2(t), then the optimal strategy specified byEq. (20)
becomes

π∗(t, x)x = p2(t), (38)

and thus we are in the case of Sect. 3.1.1. In conclusion, d(t) = 2a(t)b(t) is a solution
and

p2(t) = α − r

σ 2γ

1

a(t)
.

Plugging the p2-function into Eq. (26)–(28) we finally have

a(t) = er(T−t),

and

bt = − (α − r)2

γ σ 2 , b(T ) = 0,

εt = − (α − r)2

γ 2σ 2 , ε(T ) = 0,
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with solutions

b(t) = θ2

γ
(T − t),

ε(t) = θ2

γ 2 (T − t),

and the optimal investment strategy in (38) becomes

π∗ (t, x) x = α − r

γ σ 2 e−r(T−t).

We see that the condition−c(t) < 0 holds, since c(t) = a2(t), and thus the strategy
does in fact realize the infimum of Eq. (13). This verifies the result of Basak and
Chabakauri (2010) and Björk and Murgoci (2010). We note that π∗(T , x)x = α−r

γ σ 2 .
In this case, we do have existence and uniqueness of the optimal control. The strat-

egy is specified as a time-dependent amount invested in stocks. Note here carefully
that it is the very combination of the market structure and the objective that secures
uniqueness in this case. The same objective can actually lead to non-uniqueness of
the optimal strategy in more general markets, as exemplified by Czichowsky (2013).
Thus, going beyond the simple market we consider can in itself destroy the uniqueness
obtained in the present case and presumably also elsewhere. A strategy which is inde-
pendent of wealth has little impact from a practical point of view. This is a property
and a drawback that this strategy shares with investment decisions under exponential
utility preferences. Note however, that exponential utility is often the preferred speci-
fication of preferences in case of utility indifference pricing because the independence
of wealth is a desirable property in incomplete market pricing. In terms of risk mea-
sures, this desirable property is the same as the translation (or cash) invariance of the
entropic risk measure which corresponds to the certainty equivalent of the exponential
utility function, see e.g. Barrieu and El Karoui (2008). Analogously, this case of ours
may be preferable to others when using mean–variance objectives for utility indiffer-
ence pricing. The strategy is illustrated in a numerical example in Fig. 1 for which the
amount is increasing, arriving at an amount equal to the Merton proportion at time T .

4.1.2 Scaled mean–variance (l1(t) = 1
� , l2(t) = 0 and k(t) = 1)

In the case where l1(t) = 1
γ

> 0, l2(t) = 0 and k(t) = 1, the investor seeks to
maximize the scaled mean–variance objective

Et,x
[
Xπ (T )

] − γ

2

Vart,x [Xπ (T )]

x
.

We see that p1 and p2 from Eqs. (34)–(35) become

p1(t) =α − r

σ 2

(
1

γ

a(t)

c(t)
+ a2(t)

c(t)
− 1

)
,
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Fig. 1 Optimal amount invested in stocks, π∗(t, x)x , for the mean–variance investor with constant γ = 3
and Black–Scholes market with r = 0.02, α = 0.06 and σ = 0.2 and investment horizon T = 10

p2(t) =α − r

σ 2

(
a(t)b(t)

c(t)
− 1

2

d(t)

c(t)

)
.

Guessing now that the solution has b(t) = d(t) = 0, we have

π∗(t) = p1(t) = α − r

σ 2

[
a2(t)

c(t)
− 1 + 1

γ

a(t)

c(t)

]
, (39)

and p2(t) = 0 and we see that we are in the case of Sect. 3.1.2, with also e(t) = 0.
Plugging the optimal strategy π∗(t) from Eq. (39) into the system in Eqs. (29)–(30)
gives

at = − ra(t) − (α − r)2

σ 2γ c(t)

[
γ [a2(t) − c(t)] + a(t)

]
a(t), a(T ) = 1, (40)

ct = − r2c(t) − (α − r)2

σ 2γ
2

[
γ [a2(t) − c(t)] + a(t)

]

− (α − r)2

σ 2γ 2

1

c(t)

[
γ [a2(t) − c(t)] + a(t)

]2
, c(T ) = 1, (41)

corresponding to the result of Björk et al. (2014). The t-derivative of the optimal
strategy π∗(t) = p1(t) is

π∗
t = σ 2(π∗(t))3 + (α − r)(π∗(t))2 + α − r

σ 2

1

γ

a(t)

c(t)
[r + (α − r)π∗(t)], (42)
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Fig. 2 Optimal proportion of wealth invested in stocks, π∗(t), for the scaled mean–variance investor with
γ = 3 and Black–Scholes market with r = 0.02, α = 0.06 and σ = 0.2 and investment horizon T = 10

with boundary condition π∗(T ) = α−r
σ 2γ

. As a result, we are not immediately able to
find the optimal strategy by solving a single ODE, since there remains a dependence on
a(t)
c(t) . Rather, we must solve a system of two ODE’s, e.g. Eqs. (40)–(41) and plugging
the solutions into Eq. (39). This is not a problem numerically, whenever a solution
exists. We refer to Björk et al. (2014) for a proof of existence and uniqueness of a
solution π∗(t) when α − r > 0 and γ > 0. We also note, that for a given solution we
must check that − γ

x c(t) < 0 for all (x, t) to ensure we have achieved the maximum.
This is generally fulfilled if γ > 0 and c(t) > 0 for all t , while the wealth of the
investor x remains positive throughout the investment horizon. Since the investment
strategy is only t-dependent, the wealth process Xπ∗

(t) remains positive as it is a
generalized Geometric Brownian Motion (GBM).

In this case, we do have existence and uniqueness of the optimal control, following
from Björk et al. (2014). The strategy is specified as a time-dependent proportion
invested in stocks. A specification in terms of a time-dependent proportion is desirable
from a practical point of view. This is a property shared with investment decisions
under constant relative risk aversion. One can think of several practical and theoretical
reasons why the proportion should be decreasing over the time horizon. The strategy
is illustrated in a numerical example in Fig. 2 for which the proportion is, however,
increasing, terminating in the Merton proportion at time T . Note though, that the
monotonicity of the optimal control can be varied by introducing time-dependence of
l1 and k. Time-dependence of l1 is here equivalent with time-dependence of γ . One
has to be careful with comparing that with a Merton problem with time-dependent
relative risk aversionwhich, to the knowledge of the authors, has not been studied from
an equilibrium point of view, only in a classical consumption-investment setting, see
Steffensen (2011). Typically, a decreasing proportion ismotivated by problem features,
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that we have not taken into account here, e.g. labor income. Thus, an increasing
strategy in our example may just be considered as a dampening effect on an otherwise
decreasing proportion coming from other features of more realistic setting. Of course,
one would have to formulate and solve the problem with labor income to see which of
the two opposite effects really dominates for realistic parameters. This, on the other
hand, would re-introduce wealth-dependence of the optimal proportion.

It is clear from the two strategies studied in Sect. 4.1.1 and the present Sect. 4.1.2,
that the equilibrium control, and therefore the controlled process, are fundamentally
different depending on the specific structure of the mean–variance objective. Further,
for each problem, one may compare with the optimally controlled process if that same
objective had been considered by a pre-committed investor. E.g., for scaled mean–
variance in the present subsection, the optimally controlled process is a geometric
Brownian motion. In case of pre-commitment, the problem is essentially a classical
linear-quadratic problem with the optimally controlled wealth being a mean-reverting
process. Thus, it appears that pre-commitment imposes some kind of stability of the
wealth dynamics that does not hold for the equilibrium case that lead to exponential
growth of wealth. However, it is beyond the scope of this paper to examine whether
this observation is something special for this case of scaled mean–variance or if this
is something that in some sense holds in generality.

4.1.3 Endogenous mean-habit (l1(t) = l2(t) = 0)

In this case the optimization problem corresponds to the investor with the objective to
minimize

1

2
Et,x

[(
(Xπ (T ) − k(t)Et,x

[
Xπ (T )

])2]
.

The problem is an adjustment to the traditional endogenous habit formation optimiza-
tion, where the habit formation is expressed in terms of the current conditional mean
instead of the current level of wealth. To our knowledge, the result is new.

We immediately see that the functions p1, p2 from Eqs. (34)–(35) become

p1(t) =α − r

σ 2

(
(2 − k(t))k(t)

a2(t)

c(t)
− 1

)
,

p2(t) =α − r

σ 2

(
(2 − k(t))k(t)

a(t)b(t)

c(t)
− 1

2

d(t)

c(t)

)
,

and as a result we see that with the guess b(t) = d(t) = 0 we are again in the case of
Sect. 3.1.2 with

π∗(t) = p1(t) =α − r

σ 2

(
(2 − k(t))k(t)

a2(t)

c(t)
− 1

)
,

where a, c are determined as solutions to Eqs. (29)–(30). We see that the strategy
realizes the infimum in Eq. (13) providing c(t) > 0 for all t . We have terminal value
π∗(T ) = α−r

σ 2 [(2 − k(T ))k(T ) − 1]. We see that the derivative is
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Fig. 3 Optimal proportion of wealth invested in stocks, π∗(t), for the endogenous mean-habit investor with
k(t) = e±r̄(T−t) for r̄ ∈ {2r , r , 0.5r} in a Black-Scholes market with r = 0.02, α = 0.06 and σ = 0.2
and investment horizon T = 10

π∗
t = −α − r

σ 2 (2k(t)k′(t) − 2k′(t) + (k2(t) − 2k(t))σ 2(π∗(t))2)a
2(t)

c(t)
.

Now, using that
(

σ 2

α−r π
∗(t) + 1

)
(2k(t) − k2(t))−1 = a2(t)

c(t) we get

π∗
t =k0(t) + k1(t)π

∗(t) + k2(π
∗(t))2 + k3(π

∗(t))3, (43)

with k1(t) = 1−k(t)
k(t)− 1

2 k
2(t)

k′(t), k0(t) = α−r
σ 2 k1(t), k2 = α − r and k3 = σ 2. In the

natural case where k(T ) = 1, we have the boundary condition π∗(T ) = 0. For the
function k(t) = e−r̄(T−t), we see that also π∗

t (T ) = 0 and that r̄ > 0 is a sufficient
condition for k1(t) > 0 for t < T . As the t-derivative in Eq. (43), can be rewritten as
π∗
t = (k1(t)/σ 2 + (π∗)2)((α − r) + σ 2π∗), it is concluded that π∗

t > 0 whenever
π∗(t) > − (α−r)

σ 2 for t < T . Thus, the strategy is negative and increasing towards 0
before termination. Also, the strategy must be increasing with lower bound for π∗(t)
given by − (α−r)

σ 2 . As a result, the polynomial in Eq. (43) is Lipschitz for t ∈ [0, T ]
and thus the ODE has a unique solution (at least for r̄ > 0). Also, as we conclude that
the strategy is negative for all t < T , we see that a sufficient condition for c(t) > 0 is
(α−r)2 ≤ 2σ 2r , sincewe hereby achieve c′(t) < 0with terminal condition c(T ) = 1.

The strategy can be viewed in a numerical example in Fig. 3 for the function
k(t) = e−r̄(T−t) for some r̄ . We have included numerical results for r̄ < 0 although
existence of a solution has not been shown. We observe that the strategies are all
negative, strictly increasing and terminating in zero. This was expected for r̄ > 0.
We note that for r̄ = 0 it is optimal to have everything in the bank account as this
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minimize the variance. For every other r̄ , it is optimal for the investor to short-sell
stocks at all times. This is because the investor at all times has an objective where it is
beneficial to have a small absolute expected wealth: (1) When r̄ > 0 the desire arises
as the target k(t)Et,x [Xπ∗

(T )] becomes small, (2) When r̄ < 0, then the desire arises
from the investor seeking to actively make the target smaller, such that it is easier to
achieve.

In this case, we do have existence and uniqueness of the optimal control for some
functions k and for others not. The strategy is specified as a time-dependent proportion
invested in stocks. Such a specification is desirable from a practical point of view.
However, for the special cases studied in detail here (exponential k) the proportion is
negative and increasing which reduces its impact from a practical point of view.

4.2 Endogenous habit formationmean–variance style

In this subsection, we consider the optimization problem where the investor has the
objective to maximize

(l1(t)x + l2(t)) Et,x
[
Xπ (T )

] − 1

2
Et,x

[
(Xπ (T ) − k(t)x)2

]
,

for some functions l1, l2, k. The problem is an adjustment to the traditional mean–
variance optimization, where we punish with the second order moment of the
difference between terminal wealth and some projection of current wealth. To our
knowledge, the result is new in its general form. With l1(t) = l2(t) = 0 the problem
corresponds to the Endogenous Habit Formation problem originally solved by Kryger
and Steffensen (2010).

The problem corresponds to the function f given by

f (t, x, y, z) = (l1(t)x + l2(t)) y − 1

2

(
z + k2(t)x2 − 2k(t)xy

)
,

fyl1(t)x + l2(t) + k(t)x,

fz = −1

2
,

and functions g(x) = x and h(x) = x2.
We search for a solution in the general form

G (t, x) = a (t) x + b(t), H (t, x) = c(t)x2 + d(t)x + e(t),

with a(T ) = c(T ) = 1 and b(T ) = d(T ) = e(T ) = 0. The partial derivatives are as
before and thus, we see that the optimal investment candidate from Eq. (19) is in the
general form in Eq. (20) with

p1(t) =α − r

σ 2

(
k(t)

a(t)

c(t)
+ 1

2

a(t)

c(t)
l1(t) − 1

)
,
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p2(t) =α − r

σ 2

(
1

2

a(t)

c(t)
l2(t) − 1

2

d(t)

c(t)

)
,

where a, c, d are solutions to the system in Eqs. (21)–(25). The terminal value is
specified through π∗(T , x)x = α−r

σ 2

( 1
2 l2(T ) + [k(T ) + 1

2 l1(T ) − 1]x). We note that
for the strategy to realize the infimum in Eq. (13), we must have −c(t) < 0.

In this case, we do not have any existence and uniqueness results. The optimal strat-
egy is affine in the wealth with mixed relations to practice since it adds an undesirable
wealth-independent amount to the position from a desirable wealth-independent pro-
portion.

4.2.1 Endogenous habit, mean–variance (l1(t) = 0 and l2(t) = 1
� )

The case with l1(t) = 0 and l2(t) = 1
γ

> 0 corresponds to the investor who seeks to
maximize

Et,x
[
Xπ (T )

] − γ

2
Et,x

[
(Xπ (T ) − k(t)x)2

]
.

The problem is an alternative to traditional mean–variance optimization with constant
γ . As a result, we get

p1(t) =α − r

σ 2

(
k(t)

a(t)

c(t)
− 1

)
,

p2(t) =α − r

σ 2

(
a(t)

c(t)

1

γ
− 1

2

d(t)

c(t)

)
.

In conclusion, we are left with the full system of ODE’s in Eqs. (21)–(25). We
are not immediately able to verify the existence and uniqueness of the solutions
to this system. We are however able to determine a solution numerically. We see
that π∗(T , x) = α−r

σ 2 (k(T ) − 1) x + α−r
σ 2γ

. Again, for the resulting strategy to real-
ize the infimum in Eq. (13), we must have c(t) > 0 for all t . This is satisfied
in the following numerical case. In addition it is checked that e(t) ≥ 0 and that
−2

√
c(t)e(t) ≤ d(t) ≤ 2

√
c(t)e(t), such that it is ensured that H(t, x) ≥ 0 for all x .

Since the investment strategy is in the form π∗(t, x) = p1(t)x + p2(t), we are not
able to plot the strategy as a function of t . A plot of the functions p1 and p2 can be
viewed in a numerical example in Fig. 4.

In the example we observe the following features: (1) If wealth is positive the
optimal proportion is increasing in time, (2) The optimal proportion is decreasing in
wealth, and at every point in time there exists a wealth threshold, such that the optimal
proportion is negative if and only if wealth exceeds that threshold (which itself is
increasing over time).

4.2.2 Endogenous habit, scaled mean–variance (l1(t) = 1
� and l2(t) = 0)

In the case with l1(t) = 1
γ

> 0 and l2(t) = 0, the investor seeks to maximize
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Fig. 4 Functions p1 and p2, defining the optimal amount invested in stocks by π∗(t, x)x = p1(t)x+ p2(t)
for the investor with Endogenous habit formation mean–variance style with γ = 3 and k(t) = er̄(T−t) for
r̄ = 0.04 in a Black-Scholes market with r = 0.02, α = 0.06 and σ = 0.2 and investment horizon T = 10

Et,x
[
Xπ (T )

] − γ

2

Et,x
[
(Xπ (T ) − k(t)x)2

]

x
.

The problem is an adjustment to the scaled mean–variance optimization. We get

p1(t) =α − r

σ 2

(
k(t)

a(t)

c(t)
+ a(t)

c(t)

1

γ
− 1

)
,

p2(t) =α − r

σ 2

(
−1

2

d(t)

c(t)

)
,

We see that the guess d(t) = 0 leads to

π∗(t) = p1(t) =α − r

σ 2

([
k(t) + 1

γ

]
a(t)

c(t)
− 1

)
. (44)

In conclusion, π∗(t) is independent of x and thus we are again in the case of Sect. 3.1.2
and the functions a and c solve the ODE system in Eqs. (29)–(30) with π∗ specified in
Eq. (44) above. In this case we must check that− γ

x c(t) < 0, for the strategy to realize
the infimum in Eq. (13). This can be achieved if γ > 0 and c(t) > 0 for all t and if the
wealth of the investor is positive at all times t . First, since the investment proportion
is dependent on t only, the wealth process is a generalized GBM and in conclusion
Xπ∗

(t) > 0 at all times. A sufficient condition for c(t) ≥ 0 is again (α − r)2 ≤ 2σ 2r .
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Fig. 5 Optimal proportion of wealth invested in stocks, π∗(t), for the investor with Endogenous habit
formation scaled mean–variance style with γ = 3 and k(t) = er̄(T−t) for r̄ ∈ {−r , −0.5r , 0.5r , r} in a
Black-Scholes market with r = 0.02, α = 0.06 and σ = 0.2 and investment horizon T = 10

With this structure, we are again able to derive an ODE for π . As a result, we do
not have to calculate a and c in order to derive π∗, but instead just solve

π∗
t = k0(t) + k1(t)π

∗(t) + k2π
∗(t)2 + k3π

∗(t)3, (45)

with k0(t) = (k′/(k+1/γ )+r)(α−r)/σ 2, k1(t) = k′/(k+1/γ )+r+θ2, k2 = 2(α−
r), and k3 = σ 2. The boundary condition is π∗(T ) = α−r

σ 2

(
k(T ) + 1

γ
− 1

)
. For the

natural choice of k(T ) = 1, we thus have the boundary condition π∗(T ) = α−r
σ 2γ

. For

the choice k(t) = er̄(T−t), we observe that a sufficient condition for all the coefficients
to be positive is r̄ ≤ r . In this case we have ensured an increasing investment strategy
when π∗ is positive. Due to the t-dependence of the coefficients, and the possibility for
π∗ to be both positive and negative, it is out of scope to show existence and uniqueness
of the solution to the ODE. However, for r̄ = 0 we are able to show that a sufficient
condition for π∗

t > 0 for all values of π∗ is (α − r)2 ≤ 4σ 2r . We notice that this is
satisfied by the above-mentioned sufficient condition for c to be positive.

The strategy can be viewed in a numerical example in Fig. 5. We observe that
the investment strategy is a strictly increasing proportion terminating in the Merton
proportion. It is seen, that the investment strategy remains positive at all times when
r̄ > 0. This corresponds to the cases where r̄ denotes a target rate of return. When
r̄ = r , then the penalty alone is minimized by full investment in the bank account,
but since the optimization is also concerned with maximizing the mean, we arrive at
a strictly positive investment strategy.
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In this case, we do not have any existence and uniqueness results. The strategy is
specified as a time-dependent proportion invested in stocks. For the special cases stud-
ied in detail here (exponential k) the proportion turns out to be increasing. However,
similarly to Sect. 4.1.2, we can vary the time-dependence and the monotonicity by
introducing time-dependence of γ .

4.2.3 Endogenous habit (l1(t) = l2(t) = 0)

The special case where l1(t) = l2(t) = 0 is relevant when investors have a time
dependent return target, k and seeks to minimize the quadratic distance

1

2
Et,x

[
(Xπ (T ) − k(t)x)2

]
,

This problem was first solved by Kryger and Steffensen (2010). We observe that

p1(t) =α − r

σ 2

(
k(t)

a(t)

c(t)
− 1

)
,

p2(t) = − α − r

σ 2

1

2

d(t)

c(t)
.

We see that the guess d(t) = 0 leads to

π∗(t) = p1(t) =α − r

σ 2

(
k(t)

a(t)

c(t)
− 1

)
. (46)

In conclusion, π∗(t) is independent of x and thus we are again in the case of Sect. 3.1.2
and the functions a and c solve the ODE system in Eqs. (29)–(30) with π∗ specified
in Eq. (46) above. We require that c(t) > 0 for all t for the strategy to realize the
infimum in Eq. (13).

With this structure, we are able to derive the following ODE for π . As a result, we
do not have to calculate a and c in order to derive π∗.

π∗
t = α − r

σ 2

c (kta + kat − ct ) − ct (ka − c)

c2
(47)

= k0(t) + k1(t)π
∗(t) + k2π

∗(t)2 + k3π
∗(t)3, (48)

with k0(t) = (k′/k + r)(α − r)/σ 2, k1(t) = k′/k + r + θ2, k2 = 2(α − r), and
k3 = σ 2. The boundary condition is π∗(T ) = α−r

σ 2 (k(T ) − 1) .

Because of the terms
(
k′/k + r

)
(α − r) /σ 2 the solution is not zero, although

π∗ (T ) = 0 for k (T ) = 1, which is the more meaningful value for k(T ). The quantity
−k′/k represents the target rate of return of the investor. Therefore, it is reasonable to
let −k′/k be a constant larger than r . If −k′/k = r , then the optimal strategy is zero,
precisely because this target can be obtained via a full allocation to the bond.

In the natural case with k(T ) = 1 and −k′/k > r , it is immediately seen that
π∗
t (T ) < 0. In conclusion, the strategy is positive and decreasing towards zero right
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Fig. 6 Optimal proportion of wealth invested in stocks, π∗(t), for the investor with endogenous habit
formation with k(t) = er̄(T−t) for r̄ = 0.04 in a Black–Scholes market with r = 0.02, α = 0.06 and
σ = 0.2 and investment horizon T = 10

before time T . We may rewrite the differential equation for π∗
t to conclude that the

only positive value forπ∗ for whichπ∗
t = 0 is

− α−r
σ

+
√
( α−r

σ )
2−4(k′/k+r)

2σ . In conclusion,
π∗
t will remain negative until this value is reached, and π∗(t) will be a decreasing

function (increasing backwards in time until reaching the maximum). Since π∗(t) is
thus bounded for t ∈ [0, T ], we may also conclude that the ODE expressed by the
polynomial in Eq. (48) is Lipschitz and thus there exists a unique solution to the ODE.

The strategy can be viewed in a numerical example in Fig. 6 for k(t) = er̄(T−t) and
r̄ > r . As expected, we observe that the strategy is a strictly decreasing proportion
terminating in zero at time T . As mentioned above, for positive investments in stocks,
it is required that the r̄ > r , such that it corresponds to a target rate of return higher
than investment in the bank account.

In this case, we do have existence and uniqueness of the optimal control. The
strategy is specified as a time-dependent proportion invested in stocks. This is desirable
from a practical point of view. Further, it is even decreasing which is also in line
with practical life-cycle investment advice, typically motivated in other ways. The
termination at zero is, however, typically not part of this advice. Interestingly, such
behavior also shows up in a very different theoretical framework, namely the so-called
worst-case scenario portfolio optimization, introduced by Korn and Wilmott (2002)
and developed further by many authors since then.

4.3 Generalizedmean–standard-deviation

Inspired by the discussion in the preceding subsection it is natural to modify the
problem, seemingly slightly, to penalize with standard deviation instead of variance.
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In single-period models it is well-known that mean–variance and mean–standard-
deviation are equivalent—in the sense that the set of risk aversions maps into the same
set of controls. As it turns out, this equivalence does not carry over to the dynamic
model.

The optimization problem considered in this subsection is that of an investor whose
objective is to maximize

l2(t)Et,x [X (T )] −
√

Et,x

[(
X (T ) − k(t)Et,x [X (T )]

)2]
.

For some functions k andγ > 0.Theproblemhas been solved inKryger andSteffensen
(2010) for k(t) = 1 and l2(t) = 1

γ
, but is included in this paper for comparison with

the other problems. We restrict ourselves to the case where γ is only dependent on
time such that the currency unit match between the mean and the penalty term.

The problem corresponds to the function f given by

f (t, x, y, z) = l2(t)y −
(
z − (2 − k(t))k(t)y2

) 1
2
, (49)

fy = l2(t) + y(2 − k(t))k(t)
(
z − (2 − k(t))k(t)y2

)− 1
2
, (50)

fz = −1

2

(
z − (2 − k(t))k(t)y2

)− 1
2
, (51)

and functions g(x) = x and h(x) = x2.
We immediately search for a solution in the form

G (t, x) = a(t)x, H (t, x) = c(t)x2,

with c(t) ≥ (2 − k(t))k(t)a2(t). The partial derivatives are as before, with b(t) =
d(t) = e(t) = 0, such that the optimal investment candidate from Eq. (19) becomes

π∗(t) = α − r

σ 2

([

l2(t)

(
c(t)

a2(t)
− (2 − k(t))k(t)

) 1
2 + (2 − k(t))k(t)

]
a2(t)

c(t)
− 1

)

.

(52)

We see that the optimal strategy is independent of x and as a result we have the same
structure of the solution as in Sect. 3.1.2 and we need to solve the system of ODE’s
specified in Eqs. (29)–(30) with π∗(t) given in Eq. (52) above. We see that providing
that l2(t) > 0 and c(t) ≥ (2 − k(t))k(t)a2(t), then the strategy realizes the infimum
in Eq. (13) when the wealth x is positive at all times. This is immediately achieved
since the strategy π∗(t) is only t-dependent and thus produces a generalized GBM
wealth process.
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4.3.1 Mean–standard-deviation (k(t) = 1)

In the special case where k(t) = 1, we have a traditional formulation of a mean–
standard-deviation problem

l2(t)Et,x [X (T )] − √
Vart,x [X (T )].

We get

π∗(t) = α − r

σ 2

⎛

⎝l2(t)

(
c(t) − a2(t)

) 1
2 a(t)

c(t)
+ a2(t)

c(t)
− 1

⎞

⎠ . (53)

Surprisingly, the solution to the system in Eq. (29)–(30) with π∗(t) given in Eq. (53)
above is π∗(t) = 0 via c(t) = a2(t). For this solution,

at = −ra(t), a (T ) = 1,

ct = −2rc(t), c (T ) = 1,

such that

a(t) = er(T−t),

c(t) = e2r(T−t).

Wenote that the infimum condition is satisfied by c(t) = a2(t). This solution of course
makes the case less interesting, although even this is an important insight. The result
was also derived as special cases in Kryger and Steffensen (2010) and Kronborg and
Steffensen (2015).

In this case, we do have existence and uniqueness of the optimal control. The
strategy is not to buy stocks. Although this is obviously in conflict with practice, we
do find that it is very important to understand that and why such a strategy occurs in
the mean–standard deviation case. Intuitively, over infinitesimally small time intervals
the order of the

√
dt-term stemming from the variance of capital gains dominates the

order of the dt-term stemming from the expectation of capital gains. Working out the
strategy backwards, one should never start investing in stocks in the first place. This
intuition also explains why there is no function l that can prevent this conclusion.

4.4 Endogenous habit formationmean–standard-deviation style

In this subsection, we consider the optimization problem where the investor has the
objective to maximize

l2(t)Et,x
[
Xπ (T )

] −
√
Et,x

[
(Xπ (T ) − k(t)x)2

]
,
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for some function γ . The problem is an adjustment to the traditional mean–standard-
deviation optimization, where we punish with the second order moment of the
difference between terminal wealth and some projection of current wealth. Again,
we restrict ourselves to scaling the penalty term with a t-dependent function γ such
that the currency units of the problem are consistent. To our knowledge, the result is
new.

The problem corresponds to the function f given by

f (t, x, y, z) = l2(t)y −
√
z + k2(t)x2 − 2k(t)xy, (54)

fy = l2(t) + k(t)x
(
z + k2(t)x2 − 2k(t)xy

)− 1
2
, (55)

fz = −1

2

(
z + k2(t)x2 − 2k(t)xy

)− 1
2
, (56)

and functions g(x) = x and h(x) = x2.
Again, we immediately search for a solution in the form

G (t, x) = a (t) x, H (t, x) = c(t)x2,

with a(T ) = c(T ) = 1 and the requirement c(t) ≥ (2k(t)a(t) − k2(t)), such that the
square root in Eqs. (54)–(56) is meaningful. The partial derivatives are as before, with
b(t) = d(t) = e(t) = 0, and thus, the optimal investment candidate from Eq. (19)
becomes

π∗(t) = α − r

σ 2

⎛

⎝ l2(t)
(
c(t) + k2(t) − 2k(t)a(t)

) 1
2 a(t)

c(t)
+ k(t)a(t)

c(t)
− 1

⎞

⎠ . (57)

Since the strategy is independent of x , we are once again in the case of Sect. 3.1.2
and the functions a and c are determined by the system in Eqs. (29)–(30) with π∗
specified by Eq. (57). For the strategy to realize the infimum in Eq. (13), we must
have c(t), l2(t) > 0 for all t in addition to the requirement c(t) ≥ (2k(t)a(t)− k2(t)).
Again, a sufficient condition for c(t) > 0 is (α − r)2 ≤ σ 2r when the strategy is
negative. The other requirement is checked in the numerical case.

We are not immediately able to determine a single ODE for π∗ but instead rely
on solving the system for a and c and plugging into Eq. (57). The system is highly
nonlinear [due to the specification of π∗(t) in Eq. (57)]. We are able to determine a
numerical approximation to the solution in R, with k(t) = e−r̄(T−t) and r̄ > 0 and
l2(t) = 1

3 , it is however out of scope to show the existence and uniqueness of a true
solution. We see that the strategy has terminal value

π∗(T ) = α − r

σ 2

(
l2(T )

(
1 + k2(T ) − 2k(T )

) 1
2 + k(T ) − 1

)
.

Anatural choice for k would result in k(T ) = 1, giving terminal condition π∗(T ) = 0.
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Fig. 7 Optimal proportion of wealth invested in stocks, π∗(t), for the investor with Endogenous habit
formation mean–standard-deviation style with γ = 3 and k(t) = e−r̄(T−t) for r̄ = 0.04 in a Black–
Scholes market with r = 0.02, α = 0.06 and σ = 0.2 and investment horizon T = 10

The strategy canbeviewed in a numerical example inFig. 7 for k(t) = e−r̄(T−t) with
r̄ = 0.04 and constant l2(t) = 1

3 . In this case the current wealth is discounted in the
penalty term, leading to an investment strategy where it is optimal to short-sell stocks.
We note that we are not able to find approximate solutions numerically in the more
natural case with r̄ < 0. The numerical method seems to struggle with the square root
and solutions might not exist e.g. due to the requirement c(t) ≥ (2k(t)a(t) − k2(t)).
We are however able to guess the solution in the particular case of r̄ = −r . Here
c(t) = a2(t) = k2(t) is a solution, leading to the optimal investment strategy π∗(t) =
0.

In this case, we do not have any existence and uniqueness results. The strategy
is specified as a time-dependent proportion invested in stocks. For the special cases
studied here (exponential k) the proportion turns out to be negative and increasing
which reduces its impact from a practical point of view. This compares to the case in
Sect. 4.1.3 but from an analytical point of view it is noteworthy that the the proportion
in Sect. 4.1.3 is concave whereas here it is convex.

4.5 Mean-scaledmean–variance optimization

In this subsection, we consider the optimization problem where the investor has the
objective to maximize

l2(t)Et,x
[
Xπ (T )

] − 1

2

Vart,x [Xπ (T )]

Et,x [Xπ (T )]
,
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for some function l2. The problem is an adjustment to the traditional mean–variance
optimization, such that the penalty term is in the same units as the mean. To our
knowledge, the result is new. In Björk et al. (2014) a similar problem is solved by
scaling with the current level of wealth x , instead of scaling with the expectation as
above. We replicated this result as a special case of our mean–variance optimization
in Sect. 4.1.2.

The above problem corresponds to the function f given by

f (t, x, y, z) = l2(t)y − 1

2

z − y2

y
,

fy =
(
l2(t) + 1

2

)
+ 1

2

z

y2
,

fz = −1

2

1

y
,

and functions g(x) = x and h(x) = x2.
We again immediately search for a solution in the form

G (t, x) = a (t) x, H (t, x) = c(t)x2,

with a(T ) = c(T ) = 1. The partial derivatives are as before, with b(t) = d(t) =
e(t) = 0 and thus, the optimal investment candidate in Eq. (19) becomes

π∗(t) = α − r

σ 2

(
1

2
[2l2(t) + 1]a

2(t)

c(t)
− 1

2

)
. (58)

We arrive at a π∗(t) which is independent of x with b(t) = d(t) = e(t) = 0, and see
that we are in the case of Sect. 3.1.2. As a result, the functions a and c are determined as
the solutions to the system of ODE’s given in Eqs. (29)–(30) with the optimal strategy
specified by Eq. (58) above. We note that for the strategy to realize the infimum of
Eq. (13), we must have c(t)

a(t)x > 0 for all (t, x). Since π∗(t) is only dependent on t ,
the wealth process is positive as it is a generalized GBM and thus all we need to show
is c(t)

a(t) > 0.
Again we instead consider the differential equation for π∗ and see that

π∗
t = α − r

σ 2

(
l ′2(t) + 1

2
[2l2(t) + 1]σ 2 (

π∗(t)
)2

)
a2(t)

c(t)
.

Since we have a2(t)
c(t) =

(
2π∗(t) σ 2

α−r + 1
)

[2l2(t) + 1]−1, we get

π∗
t = α − r

σ 2

(
2l ′2(t)[2l2(t) + 1]−1 + σ 2 (

π∗(t)
)2)

(
π∗(t) σ 2

α − r
+ 1

2

)
,
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with boundary condition π∗(T ) = α−r
σ 2 l2(T ). Thus, we are able to determine the

optimal strategy by solving a single ODE and without determining the functions a and
c.

We see that in the special case where 2l2(t) := 1 − c̃(t)
ã2(t)

+ 2 1
γ

1
ã(t) , with ã and c̃

being the solution to the ODE’s in Eqs. (40)–(41), the optimal strategy is identical to
the mean–variance strategy with l1(t) = 1

γ
in Sect. 4.1.2.

4.5.1 Mean-scaled mean–variance (l2(t) = 1
� )

In the natural case where l2(t) = 1
γ

> 0, the investor wishes to maximize

Et,x
[
Xπ (T )

] − γ

2

Vart,x [Xπ (T )]

Et,x [Xπ (T )]
.

The investment problem corresponds to the special case of the generalized mean–
variance investor of Sect. 4.1.2, where instead of scaling the variance with current
wealth, the variance is scaled with the expected terminal wealth. We consider this a
more natural scale, since we are considering the variance of terminal wealth. As a
result, we get the t-derivative of the optimal strategy

π∗
t = σ 2 (

π∗(t)
)3 + 1

2
(α − r)

(
π∗(t)

)2
, (59)

with boundary condition π∗(T ) = α−r
σ 2γ

. We observe the elegant structure of the

solution which is captured in a single ODE for the optimal strategy π∗(t) in Eq. (59).
In comparison, the optimal strategy of the investor where the variance is scaled with
current wealth, as expressed in Eq. (42) is still dependent of the a- and c-function
and as a result, a system of two ODE’s must be solved. We see, that π∗

t ≥ 0 for
π∗ ≥ − 1

2
α−r
σ 2 and negative otherwise. In conclusion, we have a lower bound for π∗(t)

for t ∈ [0, T ] since the terminal condition is positive. Thus, we may conclude that the
polynomial in Eq. (59) is Lipschitz and in conclusion, there exists a unique solution
to the ODE. We approximate the solution numerically in R.

The strategy from Eq. (59) can be viewed in a numerical example in Fig. 8. We
note that for the positive strategy to realize the infimum of Eq. (13), we must check
that c(t)

a(t) > 0. This is satisfied in the numerical example. As expected, we see that the
strategy is increasing and terminating in the Merton proportion.

In this case, we do have existence and uniqueness of the optimal control. The
strategy is specified as an increasing time-dependent proportion invested in stocks,
comparable with the case in Sect. 4.1.2. We refer to the discussion there about intro-
ducing time-dependence in the risk aversion to vary themonotonicity of the proportion.
From comparing (42) and (59) we note carefully the relation between the solutions
to the two problem: The terms of the derivative of π in (59) are also present in (42).
In (59) existence and uniqueness thereafter can be concluded by Lipschitz arguments,
whereas in (42) the situation is much more involved due to an extra term involving
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Fig. 8 Optimal proportion of wealth invested in stocks, π∗(t), for the investor with mean-scaled mean–
variance objective with γ = 3 in a Black–Scholes market with r = 0.02, α = 0.06 and σ = 0.2 and
investment horizon T = 10

other functions that are integrate parts of the solution. We find this to be an appeal-
ing observation and suggest to look more into scaling by expected wealth rather than
current wealth in future studies on scaled variance objectives, i.e. replace

Et,x
[
Xπ (T )

] − γ

2

Vart,x [Xπ (T )]

x

by

Et,x
[
Xπ (T )

] − γ

2

Vart,x [Xπ (T )]

Et,x [Xπ (T )]
.

We have presented a long list of problems and solutions in compendium-style,
including some with little practical impact and/or with no existence and uniqueness
results. It is then appropriate to conclude with this special case. The structure of the
numerical results compares with other scaled variance studies in the literature, see
Björk et al. (2014) and Björk et al. (2017), but the easier access to existence and
uniqueness results is a genuine improvement from an analytical point of view.
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Appendix

Proof (Proof of Theorem 1) Consider an arbitrary admissible strategy π in the sense
of Definition 2.
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1. It is immediately observed, that for the arbitrary admissible strategy π , then the
function Y π (t, x) ∈ C1,2, satisfying Eqs. (7)–(8) while having the process of
Eq. (11) in L2, has the interpretation

Y π (t, x) = yπ (t, x) , (60)

with yπ defined in Eq. (3).
This is a direct result of the Feynman–Kac stochastic representation formula (see
e.g. Proposition 5.5 in Björk (2009)). The same applies for zπ (t, x) with the func-
tion Zπ (t, x) ∈ C1,2 specified in Definition 2.
As a direct consequence, it is concluded that the functions G(t, x) and H(t, x)
have the interpretation yπ∗

(t, x) and zπ
∗
(t, x).

2. Next, recalling that Jπ (t, x) denotes the value function of a given strategy π , we
show that

lim inf
h→0

Jπ∗
(t, x) − Jπ∗

h (t, x)

h
≥ 0,

for all (t, x), with π∗
h defined as in Definition 1 and π∗ as specified in Eq. (13)

of the theorem. First, we apply the rewriting of Remark 1. Second, re-calling that
π∗ is determined by Eq. (13), we conclude that for any fixed (t, x) and arbitrarily
chosen π , the strategy π∗ satisfies

ft − (
r + π∗ (α − r)

)
x

(
fyGx + fz Hx

) − 1

2
σ 2(π∗)2x2

(
fyGxx + fz Hxx

)

≤ ft − (r + π (α − r)) x
(
fyGx + fz Hx

) − 1

2
σ 2π2x2

(
fyGxx + fz Hxx

)
,

(61)

where we recall the suppressed arguments of the f -function, f = f (t, x,G(t, x),
H(t, x)). Meanwhile, we observe that for any admissible strategy π , the value
function Jπ (t, x) := f (t, x, yπ (t, x), zπ (t, x)) = f (t, x,Y π (t, x), Zπ (t, x)),
by the chain-rule, has t-derivative

Jπ
t = f π

t + f π
y Y

π
t + f π

z Zπ
t ,

where we use the short notation f π = f (t, x,Y π (t, x), Zπ (t, x)), to highlight
the arguments of the f -function. Since we are considering admissible strategies,
we can use the interrelations in Eqs. (7) and (9), to arrive at

Jπ
t = f π

t + f π
y (− (r + π (α − r)) xY π

x − 1

2
σ 2 (π)2 x2Y π

xx )

+ f π
z (− (r + π (α − r)) x Zπ

x − 1

2
σ 2 (π)2 x2Zπ

xx )

= f π
t − (r + π (α − r)) x

(
f π
y Y

π
x + f π

z Zπ
x

)
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− 1

2
σ 2 (π)2 x2

(
f π
y Y

π
xx + f π

z Zπ
xx

)
.

Combined with the inequality of Eqs. (61), we see that

Jπ∗
t ≤ f π∗

t − (
r + π∗

h (α − r)
)
x

(
f π∗
y Gx + f π∗

z Hx

)

− 1

2
σ 2(π∗)2x2

(
f π∗
y Gxx + f π∗

z Hxx

)
,

and we conclude that

J
π∗
h

t − Jπ∗
t ≥ f

π∗
h

t − f π∗
t

− (
r + π∗

h (α − r)
)
x

(
f
π∗
h

y y
π∗
h

x + f
π∗
h

z z
π∗
h

x − f π∗
y Gx − f π∗

z Hx

)

− 1

2
σ 2(π∗

h )2x2
(
f
π∗
h

y y
π∗
h

xx + f
π∗
h

z z
π∗
h

xx − f π∗
y Gxx − f π∗

z Hxx

)
.

Finally, we see that

Y π∗
h (t, x) → Y π∗

(t, x),

for h → 0 (and similarly for Z ). This is concluded as

Y π∗
h (t, x) − Y π∗

(t, x) =Y π∗
(t + h, x) − Y π∗

(t, x)

− (Y π∗
h (t + h, x) − Y π∗

h (t, x))


Y π∗
t · h − Y

π∗
h

t · h → 0,

for h → 0, since the function Y π∗
(t, s) are assumed to be inC1,2 and by definition

of π∗
h , we have Y

π∗
(t + h, x) = Y π∗

h (t + h, x). Since it is also required that the
function f is in C1,2,2,2 in the sample space of the admissible strategies, we see
that also

f
π∗
h

t → f π∗
t ,

f
π∗
h

y y
π∗
h

x → f π∗
y Gx ,

f
π∗
h

z z
π∗
h

x → f π∗
z Hx ,

f
π∗
h

y y
π∗
h

xx → f π∗
y Gxx ,

f
π∗
h

z z
π∗
h

xx → f π∗
z Hxx ,

for h → 0 and in conclusion we have shown that

lim inf
h→0

Jπ∗
(t, x) − Jπ∗

h (t, x)

h
≥ 0.
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