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Abstract
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1 Introduction
We unify two directions of generalizing the classical Merton’s consumption-investment problem
with labor income, namely the introduction of life insurance decisions and the introduction of
capital constraints. This unification is particularly relevant since the savings in a life and pension
contract often contain restrictions that are special examples of our capital constraint. We solve
the joint problem where the individual with an uncertain life time can buy life insurance or
annuities and, at the same time, there is a general capital constraint on his savings.

The uncertain life time is well-motivated but it turns a deterministic income rate while being
alive into a stochastic income rate. Access to life insurance and annuities completes the market
and makes the financial value of labor income unique.

The capital constraint allowed for in this paper is sufficiently general to cope with two well-
motivated situations:

1) One possible capital constraint is that the savings are not allowed to become negative. We
can speak of this as a no-borrowing constraint but it is important to stress that it is a constraint
on wealth and not on investment position. In a life insurance context one would speak of such
a constraint as a non-negative reserve constraint. The intuition is that it should always be the
pension institution that owes money to the policy holder and not the other way around. This
is a standard institutional/regulatory constraint that serves to separate, institutionally, saving
business from lending business.

2) Another possible capital constraint is that the savings earn a minimum return. We speak
of this as an interest rate guarantee. This is a delicate capital guarantee since it protects the
dynamics of wealth rather than wealth itself. Thus, formalized as a constraint on the capital
itself, this constraint depends on the trajectory of the state variables. Such a guarantee appears
in many different types of life insurance contracts, ranging from participating life insurance with
a so-called surrender option with a guaranteed sum upon surrender to unit-link life insurance
where you can add on different types of options on the return.

In both situations one may ask why is the constraint there at all? The separation of saving
business from lending business perhaps serves to protect the pension institution from unspanned
policy holder credit risk. We stress the word unspanned here because one could argue that
spanned life insurance risk is also credit risk in the context of borrowing against future income.
Credit risk is a matter for the lending business who would require some material collateral, like
a house or something, in addition to a ’planned’ working life. But there is no such unspanned
policy holder credit risk within our model, so who asked for a constraint? Also the guarantee on
return may seem odd: Who asked for that? The titular question posed by Jensen and Sørensen
(2001) means almost the same. Well, the answer ’the social planner’ applies to both questions. If
the society prefers that savings are non-negative, or if the society prefers that policy holders (via
their delegated pension institutions) invest as safely as it is dictated by an interest rate guarantee,
then the constraints can appear through the regulatory environment. Thus, these constraints
should not necessarily be interpreted as a twist on the policy holders preferences within the
model but as a societal constraint from outside the model/preferences. Formalistically, the two
interpretations are the same, though. It is interesting to discuss if and when such constraints
really are meaningful from the point of view of the social planner. However, this is beyond
the scope of this paper. Furthermore, during these decades where certain markets show a
tendency from classical interest rate guarantee participating life insurance towards modern unit-
link products, the policy holders tend to actually buy these options on the return. So, could it be
something that the people want, after all? Prospect theory may help motivating guarantees, see
e.g. Døskeland and Nordahl (2008). We do not incorporate prospect theory in our preferences
but take the guarantees to be exogenously given.

Life insurance was introduced to Merton’s classical consumption-investment problem first
already by Richard (1975) but Yaari (1965) had even earlier results in discrete time. It took three
decades before the actuarial academic community realized the importance of the fundamental
patterns of thinking by Richard (1975). Since then, many articles generalize the results by
Richard in various directions. They include Pliska and Ye (2007) who allow for an unbounded
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lifetime; Huang and Milevsky (2008) who allow for unspanned labor income; Huang et al. (2008)
who separate the breadwinner income process from the family consumption process; Steffensen
and Kraft (2008) who generalize to a multistate Markov chain framework typically used by
actuaries for modeling a series of life history events; Nielsen and Steffensen (2008) who work
with constraints on the insurance sum paid out upon death; Bruhn and Steffensen (2011) who
generalize to a multiperson household, with focus on a married couple with economically and/or
probabilistically dependent members; Kwak et al. (2011) who also consider a household but focus
on generation issues.

Our contribution compared to the list of papers in the former paragraph is that we add
capital constraints. They are particularly interesting since the life insurance and pension savings
contracts typically contain borrowing or return constraints set by either the insurance company
directly or by the regulatory authorities indirectly.

Capital constraints have been studied in a series of papers. They were first studied as a
European (i.e. terminal) capital constraint in Teplá (2001) and Jensen and Sørensen (2001) who,
interestingly, motivated the study of capital constraints from guarantees in pension contracts.
Later results of El-Karoui et al. (2005) concern an American (i.e. continuous) capital guaranteed.
The three papers on capital constraints mentioned above all deal with the investment problem
exclusively, disregarding labor income and consumption. Kronborg (2011) generalizes the results
of El-Karoui et al. (2005) to include spanned labor income and optimal consumption.

Our contribution compared to the list of papers in the former paragraph is that we add
life insurance risk and decisions and allow for more general path dependent constraints. This
combination makes it possible to study realistic decision processes and product designs including
relevant regulatory and/or institutional constraints in the pension savings market.

Speaking of terminal and continuous constraints as being European and American, respec-
tively, may seem a bit far-fetched until the resulting strategy appears: The best strategy is to
follow a so-called option based portfolio insurance strategy (OBPI) where a certain part of the
capital is invested in the optimal portfolio for the unconstrained problem and then put option
protected downwards for the residual amount such that the guarantee is fulfilled and such that
the combined position is worth the wealth. In the European case the portfolio is protected by a
European put option whereas in the American case the portfolio is protected by an American put
option. The underlying portfolio of the American put option is continuously updated, though,
paid by the cash flow from the put option, see El-Karoui et al. (2005). A particular feature arises
in the presence of income and consumption, namely, that also the strike is updated, see Kronborg
(2011). This ’updating of the American strike’ pattern appears also in the present paper in the
presence of life insurance risk and protection. The update becomes even more delicate due to
the path dependence of the capital guarantee.

Two other lines of literature should be mentioned for dealing with related problems although
the market or the control fundamentally differ: Optimal annuitization has been studied in a
series of papers, see Milevsky and Young (2007) and references therein. Optimal retirement
timing has been studied in e.g. Farhia and Panageas (2007). We also wish to mention Dybvig
and Liu (2010) since they combine the retirement decision with capital constraints similar to the
ones we deal with here.

We apply the martingale method developed by Karatzas et al. (1987), Cox and Huang (1989),
Cox and Huang (1991) and Cvitanic and Karatzas (1992). This method deals efficiently with
capital constraints and has been used in all the papers on capital constraints mentioned above.
However, Kraft and Steffensen (2012) show how also dynamic programming applies to problems
with capital constraints.

The outline of the paper is as follows: In Section 2, we present the state processes and define
the natural set of admissible strategies in presence of spanned labor income. In Section 3, we
formalize and solve the unconstrained problem. Section 4 contains a formalization and a solution
to the constrained problem. Numerical examples of the (constrained and unconstrained) optimal
wealth dynamics are illustrated. We conclude in Section 5. Finally, a rigorous proof showing
the admissibility of the strategy found in Section 4 is presented in the appendix.
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2 Setup
Consider a policyholder with a life insurance policy issued at time 0 and terminated at a deter-
ministic point in time 0 < T < ∞. One should think of T as the time of retirement decided
beforehand by the policyholder. The policyholder’s time of death is given by a non-negative
random variable τd defined on a given probability space (Ω,F , P ). We assume that τd has a
probability distribution given by a function F with density function denoted by f . We can then
define the survivor function F by

F (t) := P (τd ≥ t) = 1− F (t) where F (t) := P (τd < t) =

∫ t

0

f(s)ds. (1)

The instantaneous time-t mortality rate of the policyholder is given by the hazard function

µ(t) := lim
ϵ→0

P (t ≤ τd < t+ ϵ | τd ≥ t)

ϵ
= lim

ϵ→0

F (t+ ϵ)− F (t)

ϵ

1

F (t)
=

F ′(t)

F (t)
=

f(t)

F (t)
= − ∂

∂t
logF (t).

We get the following well-known expressions frequently used by actuaries

F (t) = e−
∫ t
0
µ(s)ds, (2)

f(t) = µ(t)e−
∫ t
0
µ(s)ds. (3)

In this paper we assume that the mortality rate is deterministic and given by a continuous
function µ : [0,∞) → [0,∞).

We now describe the investment and life insurance market available to the policyholder.
Consider a Black-Scholes market consisting of a bank account, B, with risk free short rate, r,
and a risky stock, S, with dynamics given by

dB(t) = rB(t)dt, B(0) = 1,

dS(t) = αS(t)dt+ σS(t)dW (t), S(0) = s0 > 0.

Here α, σ, r > 0 are constants and we assume α > r. The process W is a standard Brownian
motion on the probability space (Ω,F ,P) equipped with the filtration FW = (FW (t))t∈[0,T ]

given by the P -augmentation of the filtration σ{W (s); 0 ≤ s ≤ t},∀t ∈ [0, T ]. We assume that
the policyholder’s random time of death τd is stochastically independent of the filtration FW .

The policyholder is assumed to be endowed with a continuous deterministic labor income
of rate ℓ(t) ≥ 0,∀t ∈ [0, T ], as long as he is alive, and possibly an initial amount of money
x0 ≥ 0. The policyholder should be thought of as an agent who has the possibility to invest and
continuously consume from or save on a pension account. Naturally, we, as done by actuaries,
refer to the policyholder’s wealth, denoted by X, as the reserve. The reserve is maintained
and invested by the pension company, but the policyholder chooses, in a continuous way, the
risky asset allocation and the sum insured to be paid out upon death before time T 1. More
specifically, let c ≥ 0 be the rate of consumption and let θ be the amount of money invested
in the risky stock. Furthermore, let D ∈ [0,∞) be the sum insured to be paid out upon death
before time T . Choosing D, the policyholder agrees to hand over the amount of money X−D to
the pension company upon death before time T , i.e. the pension company keeps the reserve X for
themselves and pays out D as life insurance. Disregarding policy expenses the natural actuarial
risk premium rate to pay for the life insurance D at time t is µ(t)(D(t)−X(t))dt. Observe that
choosing D > X corresponds to buying a life insurance and choosing D < X corresponds to
selling a life insurance, i.e. buying an annuity. The dynamics of the reserve at the state alive2

1An alternative interpretation, also given by Nielsen and Steffensen (2008), is that the company chooses the
investment and life insurance strategy on the behalf of the policyholder.

2For the rest of the paper we refer to the reserve at the state alive as simply the reserve.
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becomes

dX(t) = [rX(t) + θ(t)(α− r) + ℓ(t)− c(t)− µ(t)(D(t)−X(t))]dt+ σθ(t)dW (t), t ∈ [0, T ),
(4)

X(0) = x0.

Once again we stress that in the case of death before the terminal time T only the sum insured,
D, is paid out to the policyholder. We call the cash flow injected to the reserve given by
ℓ(t)− c(t)− µ(t)D(t), ∀t ∈ [0, T ], the pension contributions.

We assume the trading strategy, θ, to be an FW
t -adapted process with

∫ T

0
(θ(t))2dt < ∞ a.s.,

the consumption rate, c, to be a non-negative FW
t -adapted process with

∫ T

0
c(t)dt < ∞ a.s., and

the insurance strategy, D, to be a non-negative FW
t -adapted process with

∫ T

0
D(t)dt < ∞ a.s.

Note that this ensures that X is well-defined and we get the unique solution, ∀t ∈ [0, T ], known
as the time-t retrospective reserve

X(t) = x0e
∫ t
0
(r+µ(y))dy +

∫ t

0

e
∫ t
s
(r+µ(y))dy[θ(s)(a− r) + ℓ(s)− c(s)− µ(s)D(s)]ds

+

∫ t

0

e
∫ t
s
(r+µ(y))dyσθ(s)dW (s). (5)

It is well known that in the Black-Scholes market the equivalent martingale measure, Q, is unique
and given by the Radon-Nikodym derivative

dQ(t)

dP (t)
= Λ(t) := exp

(
−
∫ t

0

α− r

σ
dW (s)− 1

2

∫ t

0

(
α− r

σ

)2

ds

)
, t ∈ [0, T ], (6)

and that the process WQ given by

WQ(t) = W (t) +
α− r

σ
t, t ∈ [0, T ], (7)

is a standard Brownian motion under the martingale measure Q. We get that the time-t retro-
spective reserve can be represented, ∀t ∈ [0, T ], by

X(t) = x0e
∫ t
0
(r+µ(y))dy +

∫ t

0

e
∫ t
s
(r+µ(y))dy[ℓ(s)− c(s)− µ(s)D(s)]ds

+

∫ t

0

e
∫ t
s
(r+µ(y))dyσθ(s)dWQ(s). (8)

Definition 2.1. Define the set of admissible strategies, denoted by A, as the consumption,
investment and life insurance strategies for which the corresponding wealth process given by (8)
is well-defined,

X(t) + g(t) ≥ 0, ∀t ∈ [0, T ], (9)

where g is the time-t actuarial value of future labor income defined by

g(t) :=

∫ T

t

e−
∫ s
t
(r+µ(y))dyℓ(s)ds,

and

EQ

[∫ T

0

e−
∫ s
0
(r+µ(y))dyσθ(s)dWQ(s)

]
= 0. (10)
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The technical condition (10) is equivalent to the condition that under Q the process∫ t

0

e−
∫ s
0
(r+µ(y))dyσθ(s)dWQ(s), t ∈ [0, T ],

is a martingale (in general it it only a local martingale, and also a supermartingale if (9) is
fulfilled, see e.g. Karatzas and Shreve (1998)). From this we conclude that (10) insures that
(c, θ,D) ∈ A if and only if X(T ) ≥ 0 and, ∀t ∈ [0, T ],

X(t) + g(t) = EQ

[∫ T

t

e−
∫ s
t
(r+µ(y))dy(c(s) + µ(s)D(s))ds+ e−

∫ T
t

(r+µ(y))dyX(T )

∣∣∣∣∣ FW (t)

]
.

(11)

At time zero this means that the strategies have to fulfill the budget constraint

x0 + g(0) = EQ

[∫ T

0

e−
∫ t
0
(r+µ(y))ds(c(t) + µ(t)D(t))dt+ e−

∫ T
0

rdsX(T )

]
. (12)

For latter use we state the following remark.

Remark 2.1. Define

Z(t) := −
∫ t

0

e−
∫ s
0
(r+µ(y))dy(ℓ(s)− c(s)− µ(s)D(s))ds+ e−

∫ t
0
(r+µ(y))dyX(t), t ∈ [0, T ]. (13)

By (8) we have that condition (10) is fulfilled if and only if Z is a martingale under Q. The
natural interpretation is that under Q the discounted reserve minus the discounted pension
contributions should be a martingale. It is useful to note that if Z is a martingale under Q the
dynamics of X can be represented in the form

dX(t) = [(r + µ(t))X(t) + ℓ(t)− c(t)− µ(t)D(t)]dt+ ϕ(t)dWQ(t), t ∈ (0, T ], (14)

for some FW (t)-adapted process ϕ. Moreover, if the dynamics of X can be represented in the
form given by (14) for some FW (t)-adapted process ϕ satisfying ϕ(t) ∈ £2, ∀t ∈ [0, T ], then Z
is a martingale under Q.

Finally, by condition (9) we allow the reserve process to become negative, as long as it does
not exceed (in absolute value) the actuarial value of future labor income. Note that condition
(9) puts a lower boundary on the reserve process and therefore rules out doubling strategies (see
e.g. Karatzas and Shreve (1998)).

3 The unrestricted pension problem
For the unrestricted pension problem the policyholder chooses his consumption, investment and
life insurance strategy in order to optimize the expected utility from consumption, bequest upon
death, and terminal pension. That is, he searches for the strategy fulfilling the supremum

sup
(c,θ,D)∈A′

E

[∫ T∧τd

0

e−
∫ t
0
β(s)dsu(c(t))dt+K1e

−
∫ τd
0 β(s)dsu(D(τd))1(τd<T )

+K2e
−

∫ T
0

β(s)dsu(X(T ))1(τd≥T )

]
, (15)
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where u : R → [−∞,∞) is a utility function representing the policyholder’s risk aversion and β
is a deterministic function representing the policyholder’s time preferences. The set A′, called
the set of feasible strategies, is a subset of the admissible strategies, defined by

A′ :=

{
(c, θ,D) ∈ A

∣∣∣∣∣ E
[∫ T∧τd

0

e−
∫ t
0
β(s)ds min(0, u(c(t)))dt

+ e−
∫ τd
0 β(s)dsK1 min(0, u(D(τd)))1(τd<T ) + e−

∫ t
0
β(s)dsK2 min(0, u(X(T )))1(τd≥T )

]
> −∞

}
.

(16)

We see that it is allowed to draw an infinite utility from a strategy (c, θ,D) ∈ A′, but only if the
expectation over the negative parts of the utility function is finite. Clearly, for a positive utility
function we have that A and A′ coincide. The constant weight factors K1 > 0 and K2 > 0 are
measures of the policyholder’s preferences concerning life insurance versus immediate consump-
tion, and terminal pension versus immediate consumption, respectively. The case K1 = 0 has
the well-known solution given by the pioneering work of Merton (1971). The case K2 = 0 and
the case excluding consumption can be analyzed along the same lines as the analysis given in
this paper. In order not to complicate the analysis further this will not be done since it requires
special treatment. The results are given by natural modifications of the results obtained in this
paper.

We want to write the optimization problem (15) in terms of the policyholder’s instanta-
neous mortality rate. By the assumption that the random time of death, τd, is stochastically
independent of the filtration FW , and by use of (1), we can rewrite the expectation in (15) as

E

[
1{τd≥T}

∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+ 1{τd<T}

∫ τd

0

e−
∫ t
0
β(s)dsu(c(t))dt

+K1e
−

∫ τd
0 β(s)dsu(D(τd))1(τd<T ) +K2e

−
∫ T
0

β(s)dsu(X(T ))1(τd≥T )

]

= E

[
F (T )

∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+

∫ T

0

f(y)

∫ y

0

e−
∫ t
0
β(s)dsu(c(t))dtdy

+K1

∫ T

0

e−
∫ t
0
β(s)dsu(D(t))f(t)dt+K2e

−
∫ T
0

β(s)dsu(X(T ))F (T )

]
. (17)

Observe that∫ T

0

f(y)

∫ y

0

e−
∫ t
0
β(s)dsu(c(t))dtdy =

∫ T

0

e−
∫ t
0
β(s)dsu(c(t))

∫ T

t

f(y)dydt

=

∫ T

0

e−
∫ t
0
β(s)dsu(c(t))

[
F (t)− F (T )

]
dt.

Plug this into (17) to obtain

E

[∫ T

0

e−
∫ t
0
β(s)dsu(c(t))F (t)dt+K1

∫ T

0

e−
∫ t
0
β(s)dsu(D(t))f(t)dt+K2e

−
∫ T
0

β(s)dsu(X(T ))F (T )

]
.

(18)

Finally, inserting (2) and (3) into (18) we can write the optimization problem (15) as

sup
(c,θ,D)∈A′

E

[∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds[u(c(t)) +K1µ(t)u(D(t))]dt+K2e

−
∫ T
0

(β(s)+µ(s))dsu(X(T ))

]
.

(19)
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For the rest of this paper we assume that the policyholder’s preferences towards risk are given
by a constant relative risk aversion function (CRRA) in the form

u(x) =


xγ

γ , if x > 0,

limx↘0
xγ

γ , if x = 0,

−∞, if x < 0,

for some γ ∈ (−∞, 1)\{0}.

Remark 3.1. We conjecture that the analysis presented in this paper can be extended to the
case of a general utility function. This would, following the ideas of El-Karoui and Karatzas
(1995) and El-Karoui et al. (2005), require use of the Gittins index methodology. We specialize
to the case of CRRA utility due to the well-known property that the maximization problem (15)
becomes linear in initial total wealth. Even in the case of a general path dependent constraint
on the reserve (see Section 4) this feature allows us to derive fairly explicit expressions for the
optimal strategies, leaving us with a greater understanding of the impact on the strategies caused
by the introduced constraints.

3.1 How to choose K2 - consumption after retirement
Choosing K1 is really a matter of personal preferences. How much do you love yourself relatively
to your inheritors? However, choosing K2 can be done in a natural way. A common choice in
the literature of consumption/portfolio selection is K2 = 1 by simply not allowing any weight
constant. This corresponds to the case where the agent prefers a terminal wealth approximately
equal to the size of accumulated consumption over the last year before the terminal time T . At
least in a pension context this seems to be a very odd choose. What the policyholder (probably)
wants is a terminal pension big enough for him to be able to maintain his standard of living
throughout his uncertain remaining life time. At the same time, he should still take his time
preferences into account. Define therefore the actuarial time-T value of a life annuity paying 1
per year continuously until the time of death as

a(T ) := E

[∫ ∞

T

e−
∫ s
T
r dy1(τd≥s)ds

∣∣∣∣∣ τd > T

]
=

∫ ∞

T

e−
∫ s
T
(r+µ(y))dyds.

Disregarding policy expenses, the policyholder standing at the time of retirement, T , might use
his terminal pension X(T ) to buy, in the life insurance market, a life annuity of rate X(T )/a(T ).
Assume that he chooses to do so and thereafter simply consumes the entire life annuity (leaving
no room for saving)3. We get that

E

[∫ ∞

T

e−
∫ s
0
β(y)dyu

(
X(T )

a(T )

)
1(τd≥s)ds

]
= E

[∫ ∞

T

e−
∫ s
0
(β(y)+µ(y))dyu

(
X(T )

a(T )

)
ds

]
= E

[
e−

∫ T
0

(β(y)+µ(y))dy

∫ ∞

T

e−
∫ s
T
(β(y)+µ(y))dydsu

(
X(T )

a(T )

)]
= E

[
e−

∫ T
0

(β(y)+µ(y))dyaS(T )u

(
X(T )

a(T )

)]
, (20)

where

aS(T ) := E

[∫ ∞

T

e−
∫ s
T
β(y)dy1(τd≥s)ds

∣∣∣∣∣ τd > T

]
=

∫ ∞

T

e−
∫ s
T
(β(y)+µ(y))dyds

3The classical annuity result of Yaari (1965) proves that consuming the entire annuity income is optimal in
the absence of bequest.
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defines the subjective actuarial time-T value of a life annuity paying 1 per year continuously until
the time of death. Comparing the terminal term in (19) with (20) we get the natural choice

K2 = aS(T )a(T )−γ . (21)

3.2 Solving the unrestricted problem
We now solve the unrestricted optimization problem given by (15). In the calculations we focus
on the representation of the problem given by (19). The methodology used in the following,
introduced by Karatzas et al. (1987), Cox and Huang (1989), Cox and Huang (1991) and Cvitanic
and Karatzas (1992), is know as the martingale method. One could, as done in Richard (1975),
Pliska and Ye (2007), Nielsen and Steffensen (2008), Huang et al. (2008) and others, have used the
Hamilton-Jacobi-Bellman (HJB) technique to derive the optimal consumption, investment and
life insurance strategy. We choose the martingale approach since the solution to the restricted
capital guarantee problem introduced in Section 4 is based on terms derived from the martingale
method in the unrestricted case. Since the HJB technique seems to be the approach applied
in the literature to solve such unrestricted optimization problems as (15) this subsection may
also serve, in its own right, as an example of how to apply the martingale approach to a classic
continuous time unrestricted optimization problem including life insurance. First we state the
result in Proposition 3.1. The result is also obtained, in slightly different forms due to different
setups and notation, by e.g. Richard (1975), Pliska and Ye (2007) and Nielsen and Steffensen
(2008).

Proposition 3.1. The optimal strategy for the problem (15) is given by the feedback forms

c∗(t) :=
X(t) + g(t)

f(t)
, (22)

D∗(t) :=
X(t) + g(t)

f(t)
K

1
1−γ

1 , (23)

θ∗(t) :=
1

1− γ

α− r

σ2
(X(t) + g(t)), (24)

where

g(t) :=

∫ T

t

e−
∫ s
t
(r+µ(y))dyℓ(s)ds, (25)

f(t) :=

∫ T

t

e−
∫ s
t
(r̃(y)+µ(y))dy

(
1 + µ(s)K

1
1−γ

1

)
ds+K

1
1−γ

2 e−
∫ T
t

(r̃(y)+µ(y))dy, (26)

and

r̃(t) := − γ

1− γ
r − 1

2

γ

(1− γ)2

(
α− r

σ

)2

+
1

1− γ
β(t). (27)

Proof. Let I : (0,∞] → [0,∞) denote the inverse of the derivative of the utility function u and
observe that by use of the concavity of u we have

u(x) ≤ u(I(z))− z(I(z)− x), ∀x ≥ 0, z > 0. (28)

Define the adjusted state price deflator H as

H(t) := Λ(t)e
∫ t
0
(β(s)−r)ds,

and define ξ∗ > 0 as the constant satisfying

H(ξ∗) := EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))ds

[
I(ξ∗H(t)) + µ(t)I

(
K−1

1 ξ∗H(t)
)]

dt

+ e−
∫ T
0

(r+µ(s))dsI
(
K−1

2 ξ∗H(T )
) ]

= x0 + g(0). (29)
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Such a ξ∗ clearly exist since I is continuous and decreasing and maps (0,∞] onto [0,∞) (see e.g.
Karatzas and Shreve (1998), Chapter 3, Lemma 6.2).

Now, take an arbitrary strategy (c, θ,D) ∈ A′ with corresponding wealth process (X(t))t∈[0,T ]

as given. Using (28), the budget constraint (12) and finally (29) we get that

E

[∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds[u(c(t)) +K1µ(t)u(D(t))]dt+K2e

−
∫ T
0

(β(s)+µ(s))dsu(X(T ))

]

≤ E

[∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds[u(I(ξ∗H(t))) +K1µ(t)u(I(K

−1
1 ξ∗H(t)))]dt

+K2e
−

∫ T
0

(β(s)+µ(s))dsu(I(K−1
2 ξ∗H(T )))

]
.

Since (c, θ,D) was an arbitrarily chosen feasible strategy we obtain the candidate optimal strat-
egy (c∗, θ∗, D∗) given by

c∗(t) = I(ξ∗H(t)), (30)

D∗(t) = I(K−1
1 ξ∗H(t)), (31)

X∗(T ) = I(K−1
2 ξ∗H(T )). (32)

We have expressed the candidate optimal investment strategy in terms of the optimal terminal
pension given by (32). Since (c∗, θ∗, D∗), by the definition of ξ∗, fulfills the budget constraint
(12) it is well known that, in a complete market, there exist an investment strategy θ∗ such that
X(T ) = X∗(T ) and (c∗, θ∗, D∗) is admissible (see e.g. Cvitanic and Karatzas (1992) or Karatzas
and Shreve (1998)). We are now going to calculate the hedging investment strategy θ∗ and to
write the expressions (30) and (31) in more explicit forms.

Observing that I(x) = x−1/(1−γ) we get from (29) that

H(ξ∗) = E

[∫ T

0

H(t)e−
∫ t
0
(µ(s)+β(s))ds(ξ∗)

−1
1−γ H(t)

−1
1−γ

(
1 + µ(t)K

1
1−γ

1

)
dt

+H(T )e−
∫ T
0

(µ(s)+β(s))dsK
1

1−γ

2 (ξ∗)
−1
1−γ H(T )

−1
1−γ

]
= (ξ∗)

−1
1−γ f(0),

where we have defined

f(t) = E

[∫ T

t

e−
∫ s
t
(µ(y)+β(y))dy

(
H(s)

H(t)

) −γ
1−γ

(
1 + µ(s)K

1
1−γ

1

)
ds

+ e−
∫ T
t

(µ(y)+β(y))dyK
1

1−γ

2

(
H(T )

H(t)

) −γ
1−γ

∣∣∣∣∣ FW (t)

]
. (33)

Since H(ξ∗) = x0 + g(0) per definition, we get that

ξ∗ = (x0 + g(0))−(1−γ)f(0)1−γ .

Inserting this into (30)–(32) and using the budget constraint (12) we get the following expressions
for the candidate optimal strategy

c∗(t) =
X(t) + g(t)

f(t)
,

D∗(t) =
X(t) + g(t)

f(t)
K

1
1−γ

1 ,

X∗(T ) =
X(t) + g(t)

f(t)

(
H(T )

H(t)

) −1
1−γ

K
1

1−γ

2 ,
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and we recognize (22) and (23) from Proposition 3.1. To calculate f note that

E

[
e−

∫ s
t
(µ(y)+β(y))dy

(
H(s)

H(t)

) −γ
1−γ

∣∣∣∣∣ FW (t)

]
= e

−
∫ s
t

(
µ(y)+ 1

1−γ β(y)− γ
1−γ r− 1

2
γ

(1−γ)2
(α−r

σ )
2
)
dy
. (34)

Now combine (33) and (34) to obtain

f(t) =

∫ T

t

e−
∫ s
t
[r̃(y)+µ(y)]dy

(
1 + µ(s)K

1
1−γ

1

)
ds+K

1
1−γ

2 e−
∫ T
t

[r̃(y)+µ(y)]dy,

with r̃ given by (27), which we identify as (26) from Proposition 3.1.
From the Girsanov Theorem we have

dH(t) = H(t)

(
(β(t)− r)dt− α− r

σ
dW (t)

)
.

An application of Itô’s lemma gives that

dX∗(t) = . . . dt+ (X∗(t) + g(t))
1

1− γ

α− r

σ
dW (t). (35)

If we compare (35) with the X-dynamics of the reserve given by (4) we get that

θ∗(t) =
1

1− γ

α− r

σ2
(X∗(t) + g(t)),

which we recognize as (24).
Finally, plug in (22)–(24) into (4) to obtain

d(X∗(t) + g(t)) =

(
r + µ(t) +

1

1− γ

(
α− r

σ

)2

−
(
1 + µ(t)K

1
1−γ

1

)
1

f(t)

)
(X∗(t) + g(t))dt

+
1

1− γ

α− r

σ
(X∗(t) + g(t))dW (t). (36)

We get the solution

X∗(t) + g(t) = (x0 + g(0)) exp

{∫ t

0

r + µ(s) +
1
2 − γ

(1− γ)2

(
α− r

σ

)2

− 1 + µ(s)K
1

1−γ

1

f(s)

 ds

+
1

1− γ

α− r

σ
W (t)

}
. (37)

In particular, since f is bounded away from zero, ∀t ∈ [0, T ], we have that X∗(t), t ∈ [0, T ], is
well-defined, and clearly (9) is fulfilled. Moreover, since X∗ + g is lognormally distributed one
can easily show that

EQ

[∫ T

0

(θ∗)2dt

]
< ∞,

which ensures that (10) is fulfilled. We conclude that the candidate optimal strategy (c∗, D∗, θ∗)
given by (22)–(24) is admissible. Since x0 and g(0) cannot both be zero we get, from (22), (23)
and (37), that c∗(t), D∗(t) > 0, t ∈ [0, T ], and X∗(T ) > 0, and we note that the additional
condition (16) is fulfilled, i.e. (c∗, θ∗, D∗) is feasible. We conclude that (c∗, θ∗, D∗) is the optimal
strategy for the unrestricted problem (15).
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3.3 Comments on the unrestricted solution
The function g defined by (25) is referred to as the actuarial present value of future labor income.
It is actuarial practice to define the reserve as a conditional expected present value of future
payments. Isolating X in (11) leaves us with such an expression for the reserve. We get,
∀t ∈ [0, T ],

X(t) = EQ

[∫ T

t

e−
∫ s
t
(r+µ(y))dy(c(s)− ℓ(s) + µ(s)D(s))ds+ e−

∫ T
t

(r+µ(y))dyX(T )

∣∣∣∣∣ FW (t)

]
.

We call the sum of the reserve and the actuarial present value of future labor income, given
by (37), the total reserve. By (24) we have that the optimal amount invested in the stock
is, comparable to Merton (1971), proportional to the total reserve and to the Sharpe ratio of
the market, and dependent on the policyholder’s risk aversion. The optimal consumption rate
and the optimal life insurance strategy, given by (22) and (23), equals the total reserve divided
by the deterministic function f given by (26), and for the optimal life insurance, multiplied
by the weight factor K

1/(1−γ)
1 . The function f can be interpreted as a subjective value of

a unit consumption rate until terminal time T or time of death, whatever occurs first, plus a
subjective actuarial present value of an endowment insurance paying K

1/(1−γ)
1 upon death before

time T and K
1/(1−γ)
2 upon survival until time T . The value of f is subjective since the time

dependent function r̃ given by (27), used for discounting in the expression of f , depends on
the policyholder’s risk aversion and time preferences. Naturally, we conclude that the optimal
consumption strategy is decreasing in K1 and K2. That is, a policyholder to whom bequest
and/or terminal pension are more important will optimally consume less. We also observe, that
a more impatient policyholder, i.e. a policyholder with a greater time preference parameter β,
optimally consumes more and buys more life insurance than a less patient policyholder. The
optimal consumption and life insurance strategy depends in a much more complex way on the
risk aversion parameter γ. By use of (36) we get, as also obtained in Steffensen and Kraft (2008),
that, ∀t ∈ [0, T ],

dc∗(t) =
d(X∗(t) + g(t))

f(t)
− X∗(t) + g(t)

f(t)2
f ′(t)dt

=

(
r − β(t) +

(
α−r
σ

)2
1− γ

+
1

2

γ

(1− γ)2

(
α− r

σ

)2
)
c∗(t)dt+

1

1− γ

α− r

σ
c∗(t)dW (t).

We get, ∀t ∈ [0, T ], the solutions

c∗(t) = c∗(0) exp

{∫ t

0

(
r − β(s) + 1

2

(
α−r
σ

)2
1− γ

)
ds+

1

1− γ

α− r

σ
W (t)

}
,

D∗(t) = D∗(0) exp

{∫ t

0

(
r − β(s) + 1

2

(
α−r
σ

)2
1− γ

)
ds+

1

1− γ

α− r

σ
W (t)

}
.

Note that c∗(t) and D∗(t) do not depend on µ(t). The optimal consumption and life insurance
strategy depend only on µ through f(0) and g(0) (through c∗(0) and D∗(0)), i.e. on the overall
level of µ. Further discussions of the qualitative behavior of the optimal controls are found in
Pliska and Ye (2007).
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4 The restricted pension problem
From (37) we have for the unrestricted optimal solution that

X∗(t) > −g(t), ∀t ∈ [0, T ],

where g(t) is the time-t actuarial value of future labor income given by (25). Allowing for a neg-
ative reserve is in conflict with the usual constraint in life insurance that the reserve should be
non-negative at any time. This should be the case since, in practice, at any time the policyholder
holds the right to stop paying pension contributions. We say that the policyholder holds the
right to surrender. This serves to separate, institutionally, the pension business from the lending
business. For further discussion of this issue see the Introduction, Section 1. As pointed out by
Nielsen and Steffensen (2008), solving the unrestricted pension problem (15) we assume that the
policyholder sticks to the pension contribution plan stipulated in the policy. The interpretation
is that in the unrestricted pension problem given by (15) the policyholder decides initially on a
consumption strategy, together with a life insurance strategy and an investment strategy, and is
thereafter obligated to follow that specific strategy, i.e. he does not hold the right to surrender
at any time.

The purpose of this paper is to find the optimal consumption, investment and life insurance
strategy when the reserve is restricted to fulfill a capital guarantee at any point in time. As
discussed, a capital guarantee of size zero is simply motivated by the policyholder’s right to
surrender at any time during the saving period. Often pension companies offer a minimum
constant rate guarantee to the policyholders. In fact, such a guarantee is often found to be
mandatory in compulsory (employer) pension schemes. In that case, the pension company
guarantees a minimum rate of return on all pension contributions. Of course, no pension company
can guarantee a constant minimum rate of return larger than the risk free short rate plus the
objective mortality rate4 since such a guarantee cannot be fulfilled with certainty. To cover a
hole class of capital guarantee problems, including the two cases discussed, we allow the capital
guarantee restriction to depend on the past in a very general way. Note that since future pension
contributions may be stochastic, the future capital guarantee may becomes stochastic. For a
comprehensive discussion and motivation of the problem see the Introduction, Section 1. More
specific, consider the problem given by the indirect utility function

sup
(c,θ,D)∈A′

E

[∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

(
u(c(t)) +K1µ(t)u(D(t))

)
dt+K2e

−
∫ T
0

(β(s)+µ(s))dsu(X(T ))

]
,

(38)

under the capital guarantee restriction

X(t) ≥ k(t, Z(t)), ∀t ∈ [0, T ], (39)

where Z(t) :=
∫ t

0
h(s,X(s))ds, and k and h are deterministic functions. The two guarantees

discussed above are covered by

k(t, z) = 0, (40)

and

k(t, z) = x0e
∫ t
0 (r

(g)+µ(s))ds + e
∫ t
0 (r

(g)+µ(s))dsz, (41)

with h(s, x) = e−
∫ s
0 (r

(g)+µ(y))dy (ℓ(s)− c(s, x)− µ(s)D(s, x)), where r(g) ≤ r is the minimum
rate of return guarantee excess of the objective mortality rate µ. Note that we in the expression

4Remember that the mortality rate is given by a deterministic function, i.e. the pension company has no risk
concerning life times.
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of h have indicated the possible x dependence in the consumption and life insurance strategy.
We can write (41) as

k(t, Z(t)) = x0e
∫ t
0 (r

(g)+µ(y))dy +

∫ t

0

e
∫ t
s (r

(g)+µ(y))dy [ℓ(s)− c(s)− µ(s)D(s)] ds. (42)

To clarify things, one could preferably compare (42) with the retrospective reserve expression
given by (5).

The solution to the restricted capital guarantee problem given by (38) and (39) turns out
to be of the Option Based Portfolio Insurance (OBPI) form. OBPI strategies are also obtained
in El-Karoui et al. (2005) and Kronborg (2011), and for a European capital constraint in Teplá
(2001). The big differences, compared to El-Karoui et al. (2005) and Kronborg (2011), are the
introduction of life insurance and the possible stochastic capital guarantee restriction. In addi-
tion, El-Karoui et al. (2005) does not include consumption and labor income. Combining classic
results from the American option theory in a Black-Scholes market and the OBPI construction
technique we are able to solve the restricted optimization problem given by (38) and (39).

Before we present the results we need some notation: Still, denote by X∗, c∗, θ∗ and D∗

the optimal unrestricted reserve and the unrestricted optimal consumption, investment and life
insurance strategy derived in Subsection 3.2, respectively. Let Y ∗(t) := X∗(t) + g(t) denote the
optimal unrestricted total reserve. By (36) and (7) we have that

dY ∗(t) =

(
r + µ(t)−

(
1 + µ(t)K

1
1−γ

1

)
1

f(t)

)
Y ∗(t)dt+

1

1− γ

α− r

σ
Y ∗(t)dWQ(t), t ∈ (0, T ),

(43)

Y ∗(0) = y0,

where y0 := x0 + g(0). Denote by P a
y,z(t, T, k + g) the time-t value of an American put option

with strike price k(s, Z(s)) + g(s),∀s ∈ [t, T ], where Z(t) = z, and maturity T written on a
portfolio Y , where Y is the solution to (43) which equals y at time t. By definition the price of
such a put option is given, ∀t ∈ [0, T ], by

P a
y,z(t, T, k + g) := sup

τ∈Tt,T

EQ
[
e−

∫ τ
t
(r+µ(s))ds(k(τ, Z(τ)) + g(τ)− Y (τ))+

∣∣∣ Y (t) = y, Z(t) = z
]
,

where Tt,T is the set of stopping times taking values in the interval [t, T ].

Theorem 4.1. Consider the strategy
(
ĉ, θ, D̂

)
given by, ∀t ∈ [0, T ],

ĉ(t) := λ(t, Z(t))c∗(t) =
λ(t, Z(t))Y ∗(t)

f(t)
, (44)

D̂(t) := λ(t, Z(t))D∗(t) =
λ(t, Z(t))Y ∗(t)

f(t)
K

1
1−γ

1 , (45)

θ(t) := λ(t, Z(t))θ∗(t) =
1

1− γ

α− r

σ2
λ(t, Z(t))Y ∗(t), (46)

combined with a position in an American put option written on the portfolio (λ(t)Y ∗(t))s∈[t,T ]

with strike price k(s, Z(s)) + g(s),∀s ∈ [t, T ], and maturity T . Here λ is the increasing function
defined by

λ(t, Z(t)) = λ(0, z0) ∨ sup
s≤t

(
b(s, Z(s))

Y ∗(s)

)
, (47)

with λ(0, z0) determined by

λ(0, z0)(x0 + g(0)) + P a
λ(0,z0)y0,z0

(0, T, k + g)− g(0) = x0, (48)
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and b being the optimal exercise boundary for the American put option given by

b(t, z) := sup
{
y : P a

y,z(t, T, k + g) = (k(t, z) + g(t)− y)+
}
. (49)

We have that

• The strategy is optimal for the restricted capital guarantee problem given by (38) and (39).

Remark 4.1. By (37) the optimal unrestricted total reserve, Y ∗, is proportional to the initial
total reserve y0. Recall also that the optimal unrestricted consumption, life insurance and
investment strategy, given by (22)–(24), are proportional to the total reserve. It should then be
clear that starting out with reduced initial total reserve equal to λ(0, z0)(x0+g(0)) and following
the strategy (ĉ, θ, D̂) given by (44)–(49) results in a total reserve equal to λ(t, Z(t))Y ∗(t),∀t ∈
[0, T ]. In total we get that the optimal restricted reserve becomes

X̂(λ)(t) := λ(t, Z(t))Y ∗(t) + P a
λY ∗,Z(t, T, k + g)− g(t), t ∈ [0, T ], (50)

i.e. the optimal restricted reserve consists of a portfolio, an insurance on that portfolio and a
loan equal to the actuarial value of future labor income.

Remark 4.2. The specific American put option is likely not to be sold in the market, but
since the market is complete and frictionless such options can be replicated dynamically by a
Delta-hedge, i.e. the optimal investment strategy can be written as

θ̂(t) =

(
1 +

∂

∂y
P a
λY ∗,Z(t, T, k + g)

)
θ. (51)

Since the put option has an opposite exposure to changes in the underlying portfolio
(λ(t)Y ∗(t))t∈[0,T ] we note that the total amount of money to invest in the risky asset, S, becomes
smaller when we introduce an American capital guarantee to the control problem (15). One
should notice, that at the boundary no risk is taken, i.e. the position in the American put option
offsets the position in the underlying portfolio such that the total exposure to changes in the
risky asset, S, becomes zero. Clearly, at the boundary it is optimal to consume a certain time-
dependent part of the labor income, thereby leaving room for a risky position in S immediately
after hitting the capital boundary.

Proof of Theorem 4.1. First, one should check that the strategy defined by Theorem 4.1 fulfills
the capital guarantee restriction given by (39). Using that the value of an American put option
is always greater than or equal to its inner value this is easily done. We get

X̂(λ)(t) := λ(t, Z(t))Y ∗(t) + P a
λY ∗,Z(t, T, k + g)− g(t)

≥ λ(t, Z(t))Y ∗(t) + [k(t, Z(t)) + g(t)− λ(t, Z(t))Y ∗(t)]+ − g(t)

≥ k(t, Z(t)), (52)

Second, one should check that the strategy defined by Theorem 4.1 is admissible. It turns
out that the rather complex strategy

(
ĉ, D̂, X̂(λ)

)
involving the stochastic increasing function λ

is the natural way to make the OBPI admissible. The heuristic argument is as follows. Consider
the strategy

(
ĉ, D̂,X(λ)

)
where λ(t, Z(t)) = λ0,∀t ∈ [0, T ], i.e. where we do not adjust λ. By

(52) such a strategy clearly fulfills the capital guarantee restriction. The strategy corresponds
to, in addition to follow the consumption, life insurance and investment strategy given by (44)–
(46), to hold the initially bought American put option to maturity. In some scenarios this is to
throw away money since the American put option is not sold when it is optimal to do so, i.e.
the strategy is not admissible (self-financing). The complicated strategy defined in Theorem 4.1
is exactly designed to avoid this. The function λ defined by (47) and (48) corresponds to selling
the American put option and re-balancing the strategy whenever optimal to do so. For a com-
prehensive explanation of the nature of the OBPI strategies see Kronborg (2011). A rigorous
proof showing that the strategy in Theorem 4.1 is admissible is given in Appendix A.
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To prove the optimality of the strategy given in Theorem 4.1 we consider an arbitrarily chosen
feasible strategy (c, θ,D) with corresponding reserve process (X(t)t∈[0,T ]) satisfying X(0) = x0

and X(t) ≥ k(t, Z(t)),∀t ∈ [0, T ]. Since u is a concave function we get that∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds [u(c(t)) +K1µ(t)u(D(t))] dt+K2e

−
∫ T
0

(β(s)+µ(s))dsu(X(T ))

−

(∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

[
u(ĉ(t)) +K1µ(t)u

(
D̂(t)

)]
dt+K2e

−
∫ T
0

(β(s)+µ(s))dsu
(
X̂(λ)(T )

))

=

∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

[
u(c(t))− u(ĉ(t)) +K1µ(t)

(
u(D(t))− u

(
D̂(t)

))]
dt

+K2e
−

∫ T
0

(β(s)+µ(s))ds
(
u(X(T ))− u

(
X̂(λ)(T )

))
≤
∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

[
u′(ĉ(t))(c(t)− ĉ(t)) +K1µ(t)u

′
(
D̂(t)

)(
D(t)− D̂(t)

)]
dt

+K2e
−

∫ T
0

(β(s)+µ(s))dsu′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
=: (∗). (53)

Since (c, θ,D) was arbitrarily chosen we simply end the proof by showing that E[(∗)] ≤ 0. By
the CRRA property u′(xy) = u′(x)u′(y) we have

u′(ĉ(t))(c(t)− ĉ(t)) = u′(λ(t, Z(t)))u′(c∗(t))(c(t)− ĉ(t)), (54)

u′
(
D̂(t)

)(
D(t)− D̂(t)

)
= u′(λ(t, Z(t)))u′(D∗(t))

(
D(t)− D̂(t)

)
. (55)

Observe that since Y ∗(T ) = X∗(T ) the value of the terminal capital pension becomes

X̂(λ)(T ) = λ(T,Z(T ))X∗(T ) + [k(T,Z(T ))− λ(T,Z(T ))X∗(T )]+

= max[λ(T,Z(T ))X∗(T ), k(T,Z(T ))]. (56)

By use of (56) and using that u′ is a decreasing function we get that

u′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
= min[u′(λ(T,Z(T )))u′(X∗(T )), u′(k(T,Z(T )))]

(
X(T )− X̂(λ)(T )

)
= u′(λ(T,Z(T )))u′(X∗(T ))

(
X(T )− X̂(λ)(T )

)
− [u′(λ(T,Z(T )))u′(X∗(T ))− u′(k(T ), Z(T ))]+ (X(T )− k(T,Z(T ))) ,

where the last equality is established by using that X̂(λ)(T ) = k(T,Z(T )) on the set
{(T, ω) : u′(λ(T,Z(T ))X∗(T )) ≥ u′(k(T,Z(T )))}. Since by assumption X(t) ≥ k(t, Z(t)),∀t ∈
[0, T ], we conclude that

u′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
≤ u′(λ(T,Z(T )))u′(X∗(T ))

(
X(T )− X̂(λ)(T )

)
. (57)
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Now insert (54), (55) and (57) and then (30)–(32) into (53) to get

E[(∗)] ≤ E

[∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

[
u′(λ(t, Z(t)))u′(c∗(t)) (c(t)− ĉ(t))

+K1µ(t)u
′(λ(t, Z(t)))u′(D∗(t))

(
D(t)− D̂(t)

) ]
dt

+K2e
−

∫ T
0

(β(s)+µ(s))dsu′(λ(T,Z(T )))u′(X∗(T ))
(
X(T )− X̂(λ)(T )

)]

= ξ∗EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))dsu′(λ(t, Z(t)))

(
(c(t)− ĉ(t)) + µ(t)

(
D(t)− D̂(t)

))
dt

+ e−
∫ T
0

(r+µ(s))dsu′(λ(T,Z(T )))
(
X(T )− X̂(λ)(T )

)]
.

Since u′(λ(t, Z(t))) is a decreasing function5 we can use the integration by parts formula to get

E[(∗)] ≤ ξ∗

(
EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))dsu′(λ(t, Z(t)))

(
(c(t)− ĉ(t)) + µ(t)

(
D(t)− D̂(t)

))
dt︸ ︷︷ ︸

(⋆)

+

∫ T

0

u′(λ(t, Z(t)))d
(
e−

∫ t
0
(r+µ(s))ds

(
X(t)− X̂(λ)(t)

))
︸ ︷︷ ︸

(⋆⋆)

]

+ EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))ds

(
X(t)− X̂(λ)(t)

)
du′(λ(t, Z(t)))︸ ︷︷ ︸

(⋆⋆⋆)

])
. (58)

The third term in (58) can be rewritten as

EQ[(⋆ ⋆ ⋆)] = EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))ds(X(t)− k(t, Z(t)))du′(λ(t, Z(t)))

]

+ EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))ds

(
k(t, Z(t))− X̂(λ)(t)

)
du′(λ(t, Z(t)))

]
.

The first term is non-positive since per definition X(t) ≥ k(t, Z(t)),∀t ∈ [0, T ], and du′(λ(t, Z(t))) ≤
0,∀t ∈ [0, T ] (u′ is decreasing and λ is increasing). The second term equals zero since du′(λ(t, Z(t))) ̸=
0 only on the set {(t, ω) : X̂(λ)(t) = k(t, Z(t))}. We conclude that EQ[(⋆ ⋆ ⋆)] ≤ 0. The two first
terms of (58) can be rewritten as

EQ[(⋆) + (⋆⋆)] = EQ

[∫ T

0

u′(λ(t, Z(t)))dM1(t)

]
− EQ

[∫ T

0

u′(λ(t, Z(t)))dM2(t)

]
, (59)

where

M1(t) :=

∫ t

0

e−
∫ s
0
(r+µ(y))dy(c(s) + µ(s)D(s)− ℓ(s))ds+ e−

∫ t
0
(r+µ(y))dyX(t),

M2(t) :=

∫ t

0

e−
∫ s
0
(r+µ(y))dy

(
ĉ(s) + µ(s)D̂(s)− ℓ(s)

)
ds+ e−

∫ t
0
(r+µ(y))dyX̂(λ)(t).

5This ensures the that the stochastic integral in (58) is well-defined.
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Since both strategies are admissible we have by (13) that M1 and M2 are martingales under the
equivalent measure Q. Since u′(λ(t, Z(t))) ≤ u′(λ(0, z0),∀t ∈ [0, T ], we get that

EQ[(⋆) + (⋆⋆)] = 0.

Finally, we can conclude that

E[(∗)] = EQ[(⋆) + (⋆⋆)] + EQ[(⋆ ⋆ ⋆)] ≤ 0.

4.1 Numerical illustrations
In this subsection we illustrate the optimal strategy presented in Theorem 4.1 for the case of a
minimum rate of return guarantee given by (42) with r(g) = 1

2r. The parameter values used for
the simulations are, for the Black-Scholes market, r = 0.01885, α = 0.05885 and σ = 0.2. The
rather low risk free short rate and expected stock rate return should be interpreted as inflation
adjusted parameters (subtracted 2.115 percent which is the average inflation in Denmark over
the last 20 years). Adjusting for inflation allow us to directly compare the size of the terminal
pension with past reserve values and labor income. The personal preference towards risk is set to
γ = −4 which is in accordance with the popular choice to have 20 percent of the reserve invested
in stocks after retirement (we have 1

1−γ
α−r
σ2 = 0.2). The time preference is set to the natural

value β = r, but one could of cause equally well had chosen the time preference parameter to be
smaller or greater than the risk free short rate. However, it seems natural to have β ≥ r since this
assures that one cannot, in a risk free way, obtain a greater amount of utility by simply investing
in the risk free short rate and then consume at a later point in time. Finally, we have chosen to
model the uncertain life time by a Gompertz-Makeham hazard rate, u(x) = exp((x −m)/b)/b,
with modal value and scale parameter as in Milevsky and Young (2007); (m, b) = (88.18, 10.5).

The individual we consider has just turned 50 years old, has a reserve of size 200000 euro
and a constant future labor income of ℓ(t) = 30000, t ∈ [50, T ], with terminal time T = 65. The
weight factor K2 in (38) is calculated by use of (21), but since it seems natural that the reserve
will also be invested after retirement we have chosen to use r̄ = 0.2α + 0.8r = 0.02685 (since
1

1−γ
α−r
σ2 = 0.2) for discounting in the expression of a(T ). The weight factor K1 in (38) is set to

K1 =
∫ 10

0
e−

∫ t+x
t

β(y)dydx
(
b
(10)
)−γ

with b
(10)

=
∫ 10

0
e−

∫ s
0
rdyds. One can realize that this is in

accordance with the standard Danish choice of a 10 years period certain pension to the inheritor
starting at the time of death (if death occurs before terminal time T ).

The remaining 15 years of optimization has been discretizied equidistantly into quarterly
time points, i.e. into 60 time points. By this we mean that the guarantee is only valid quarterly
and the American put option has been evaluated as a Bermuda put option with quarterly ex-
ercise dates. Likewise, λ and therefore the optimal consumption, investment and life insurance
strategy has only been changed quarterly. Saying that, it is important to stress that between
the quarterly time points, consumption, investments and bequest have been re-balanced contin-
uously6.

It seems natural to compare the restricted solution with the unrestricted counterpart. Fig-
ure 1 illustrates how the restricted optimal reserve always is greater or equal to the guarantee
while the unrestricted reserve sometimes is greater and sometimes smaller than the ’fictive’ guar-
antee7. In fact we conclude that ignoring a guarantee requirement, and behaving optimal from
the no guarantee point of view, will very likely result in a reserve smaller than the guarantee.
Note that the restricted strategy can, for certain outcomes, outperform the unrestricted strat-
egy both in terms of accumulated utility and terminal pension. In fact we have a 24 percent

6We have used (37).
7To be clear, there is of cause no guarantee belonging to the unrestricted reserve, but we can calculate the

guarantee anyway and then compare the unrestricted reserve with the guarantee.
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probability that the restricted investor will obtain more utility over the interval of optimization
than the unrestricted investor.
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Figure 1: The restricted reserve (solid curves) and the unrestricted reserve (dashed curves)
together with the corresponding guarantee (solid smooth curves) and fictive guarantee (dashed
smooth curves), respectively. The lower right plot indicates the average scenario.

In Table 1 we see that the restricted optimal terminal pension has a slightly smaller median
than the unrestricted one, but at the same time the restricted terminal pension has a much
more narrow distribution. We also see that the pension saver with the minimum rate of re-
turn guarantee will, in contrast to the one without, more or less avoid ending up with a very
small terminal pension. We want to stress that one cannot use Table 1 to compare the perfor-
mances of two strategies since money spent before the terminal time T is not taking into account.

Fractal 0.001% 0.01% 2.5% 25% median 75% 97.5% 99.99 % 99.999%
Restricted 10.21 10.58 11.33 12.18 13.12 14.30 17.08 22.03 23.60

Unrestricted 6.10 7.53 10.02 12.22 13.57 15.09 18.39 24.09 25.91

Table 1: Reserve at retirement expressed in numbers of yearly labor income (the terminal reserve
divided by the labor income rate). Chosen fractals for both the restricted and unrestricted case
are presented.
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The actuarial value of future labor income is g(50) = 380387 euro leaving the 50 years old
investor with a total reserve of size Y (50) = 580387. By simulation we calculate λ(50) = 0.9041
meaning that initially about 90 percent of the total reserve is invested in the optimal unrestricted
portfolio and the remaining 10 percent is used to buy the American put option as an insurance
against downfalls in the portfolio. Figure 2 shows how lambda increases at the time points
where the insurance is in use (where it is optimal to sell the put option and re-calibrate the
OBPI strategy accordingly to the new lambda value).
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Figure 2: The lambda process corresponding to the reserve processes from Figure 1.

The optimal investment strategy is given by (51) and (46). Figure 3 shows the optimal
fraction of the total reserve invested in stocks. The main observation to do is to note how
wide the 95 percent confidence interval is. Even in the case of very big investment returns it
takes about seven years (about half the optimization interval) before the insurance part becomes
negligible and the restricted investor starts to invest (almost) as aggressively as the unrestricted
investor. In the case of very low investment returns we see that the restricted investor gets
stocked with the guarantee and cannot afford to take very much risk.
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Figure 3: The restricted investment strategy presented as the fraction of the total reserve invested
in stocks. The average scenario (solid curve) as well as the 95 percent confidence interval (dotted
curves) are indicated together with the unrestricted case (π = 0.2).

At last we have in Figure 4 illustrated the optimal life insurance and pension contributions
as a fraction of the reserve and labor income, respectively. We see that at the age 50-55 the
investor stops protecting parts of his future labor income and buys annuities instead. One
should note how narrow the 95 percent confidence interval is in the restricted case compared
to the unrestricted case. We also see that the restricted investor saves more money than the
unrestricted investor. In other words: The introduction of a minimum rate of return guarantee
seems to imply bigger pensions contributions. This is somehow surprising from a logical point
of view but this is simply a consequence of the OBPI strategy.
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Figure 4: Left window: The restricted (solid curves) and unrestricted (dashed curves) life insur-
ance strategy presented, for the average scenario, as the fraction of the reserve to be payed out
upon death. The 95 percent confidence intervals are indicated. Right window: The restricted
(solid curve) and unrestricted (dashed curve) pension contribution strategy presented, for the
average scenario, as a fraction of the labor income rate. The 95 percent confidence intervals are
indicated.

5 Conclusion
This paper solves the classic consumption, investment and life insurance control problem in
the present of an American capital guarantee. Pension saving products often come with a
minimum rate of return guarantee, which seems to be quiet a popular feature. Therefore the main
focus, and the entire numerical section, has been on the solution for this specific type of capital
guarantee. By use of cleaver chosen weight factors concerning the utility from consumption vs
bequest and consumption vs pension the problem seems to be rather close to the real life question
of how to save for retirement. The solution is an option based portfolio insurance (OBPI) strategy
which is well know from the portfolio selection literature. However, to the authors knowledge
this paper applies for the first time the OBPI approach to the saving for retirement problem. The
encouraging realization offered by this paper is that the OBPI approach can handle the inclusion
of a life insurance market as well as the introduction of a non-deterministic American guarantee,
thereby allowing the capital guarantee to depend upon the size of the pension contributions.
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A Appendix
Proof of admissibility. To prove that the strategy in Theorem 4.1 is admissible we first recall
some basis properties of an American put option in a Black-Scholes market (see e.g. Karatzas
and Shreve (1998)). We have

P a
y,z(t, T, k + g) = k(t, z) + g(t)− y, ∀(t, y, z) ∈ Cc,

LP a
y,z(t, T, k + g) = (r + µ(t))P a

y,z(t, T, k + g), ∀(t, y, z) ∈ C,
∂

∂y
P a
y,z(t, T, k + g) = −1, ∀(t, y, z) ∈ Cc,

where (see (43))

L :=
∂

∂t
+

(
r + µ−

(
1 + µ(t)K

1
1−γ

1

)
1

f(t)

)
y
∂

∂y
+ h

∂

∂z
+

1

2

(
1

1− γ

α− r

σ
y

)2
∂2

∂y2
,

and
C := {(t, y, z) : P a

y,z(t, T, k + g) > (k(t, z) + g(t)− y)+},

defines the continuation region. By Cc we mean the complementary of C, i.e. the stopping region.
The continuation region can be described via the exercise boundary b given by (49). We get

C = {(t, y, z) : y > b(t, z)} .

Introducing the function A by

A(t, y, z) := y + P a
y,z(t, T, k + g)− g(t),

we can write (50) as
X(λ)(t) = A(t, λ(t, Z(t))Y ∗(t), Z(t)).
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From the properties of P a
y,z(t, T, k + g) we deduce that

A(t, y, z) = k(t, z), ∀(t, y, z) ∈ Cc,

LA(t, y, z) =
(
r + µ−

(
1 + µ(t)K

1
1−γ

1

)
1

f(t)

)
y + (r + µ(t))P a

y,z(t, T, k + g)

− (−ℓ(t) + (r + µ(t))g(t))

= (r + µ(t))A(t, y, z) + ℓ(t)−
(
1 + µ(t)K

1
1−γ

1

)
y

f(t)
, ∀(t, y, z) ∈ C,

(60)

LA(t, y, z) = ∂

∂t
k(t, z) + h(t, z)

∂

∂z
k(t, z), ∀(t, y, z) ∈ Cc,

(61)
∂

∂y
A(t, y, z) = 0. ∀(t, y, z) ∈ Cc.

(62)

Observe that since Y ∗(t) is linear in its initial value, ∀t ∈ [0, T ], we have for a constant λ
that λY ∗(t) has the same dynamics as Y ∗(t), ∀t ∈ [0, T ]. We now get by use of Itô’s formula,
(60)–(61), (22)–(24), and the fact that λ increases only at the boundary, that8

dA(t, λ(t, Z(t))Y ∗(t), Z(t))

= [dA(t, λY ∗(t), Z(t))]|λ=λ(t,Z(t)) + Y ∗(t)
∂

∂y
A(t, λ(t, Z(t))Y ∗(t), Z(t))dλ(t, Z(t))

= λ(t, Z(t))
∂

∂y
A(t, λ(t, Z(t))Y ∗(t), Z(t))σθ∗(t)dWQ(t)

+
[
(r + µ(t))A(t, λ(t, Z(t))Y ∗(t), Z(t))

+ ℓ(t)− λ(t, Z(t))c∗(t)− µ(t)λ(t, Z(t))D(t)∗
]
1(λ(t,Z(t))Y ∗(t)>b(t,Z(t)))dt

+

[
∂

∂t
k(t, Z(t)) + h(t, Z(t))

∂

∂z
k(t, Z(t))

]
1(λ(t,Z(t))Y ∗(t)≤b(t,Z(t)))dt

+ Y ∗(t)
∂

∂y
A(t, λ(t, Z(t))Y ∗(t), Z(t))1(

λ(t,Z(t))Y ∗(t)=b(t,Z(t))
)dλ(t, Z(t)).

Since by (62) ∂
∂yA(t, λ(t)Y

∗(t), Z(t)) = 0 on the set {(t, ω) : λ(t, Z(t))Y ∗(t) = b(t, Z(t))} this
reduces to

dA(t, λ(t, Z(t))Y ∗(t), Z(t))

= λ(t, Z(t))
∂

∂y
A(t, λ(t, Z(t))Y ∗(t), Z(t))σθ∗(t)dWQ(t)

+ [(r + µ(t))A(t, λ(t, Z(t))Y ∗(t), Z(t)) + ℓ(t)− λ(t, Z(t))c∗(t)− µ(t)λ(t, Z(t))D(t)∗] dt

+

[
∂

∂t
k(t, Z(t)) + h(t, Z(t))

∂

∂z
k(t, Z(t))

− [(r + µ(t))k(t, Z(t)) + ℓ(t)− λ(t, Z(t))c∗(t)− µ(t)λ(t, Z(t))D(t)∗]

]
1(λ(t,Z(t))Y ∗(t)≤b(t,Z(t)))dt.

8 ∂
∂y

now means differentiating w.r.t. the second variable.
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Finally, since {(t, ω) : λ(t, Z(t))Y ∗(t) ≤ b(t, Z(t))} =
{
(t, ω) : λ(t, Z(t)) = b(t,Z(t))

Y ∗(t)

}
has a zero

dt⊗ dP -measure we conclude that

dA(t, λ(t, Z(t))Y ∗(t), Z(t))

= [(r + µ(t))A(t, λ(t, Z(t))Y ∗(t), Z(t)) + ℓ(t)− λ(t, Z(t))c∗(t)− µ(t)λ(t, Z(t))D(t)∗] dt

+ λ(t, Z(t))
∂

∂y
A(t, λ(t, Z(t))Y ∗(t), Z(t))σθ∗(t)dWQ(t),

i.e. by (14) the strategy is admissible.
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