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Abstract. Saving for retirement by with-pro�ts pension contracts is
markedly di�erent from traditional savings vehicles in at least two as-
pects: premia committed to the company are managed according to the
preferences of the company � which may not coincide with the long-term
interests of the client � and the return on investments is not directly
transferred to client's savings but awaits a decision by the company to
spend it as bonus.

We show that a management's general aversion to (short-term) in-
solvency risk results in investment strategies dynamically scaling invest-
ment risk up and down with the current funding status of the company.
The resultant dynamics hugely impacts the long-term funding status
of the pension company and thereby the investment outcome of with-
pro�ts contracts. We show that for a one-period optimizing company
there exists a stationary regime only for moderately aggressive invest-
ment strategies, and we derive an analytical approximation to the sta-
tionary funding ratio distribution when it exists. In contrast to the
one-period case, we show that the highest expected bonus level in sta-
tionarity is not achieved for the most aggressive investment strategy
available. The reason being that if investments become too aggressive
the company will spend a lot of time at low funding ratios where bonus
cannot be attributed impairing the average bonus.
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1. Introduction

Modern investment management is about optimizing risk versus reward.
The theoretical foundation was laid by Markowitz (1952) whose key result
was that investors should diversify their investment portfolios to minimize
variance of their investment without impairing expected return. The theory
is easily generalized to take each investors personal preferences into account
by the introduction of a utility function, Merton (1971). The main premise
remains though - any gain or loss is attributed the investor solely!
For a large group of investors this paradigm is not applicable, namely

those saving for their retirement through participating � or with-pro�ts �
programmes through a pension company. In this type of savings vehicle the
pension company acts on behalf of its customers as an investment collective
where each client has chosen to participate in the programme.
With-pro�ts pension schemes are therefore distinctly di�erent from other

savings vehicles because stakeholders are di�erent. After the contract has
been signed the investment outcome is not driven by markets solely but has
become dependent on investment and bonus decisions made by the company
outside the client's control.
Another key issue to pension fund operation is stationarity since the hori-

zon of client's participation is so long � life-long in fact. The alternative, ie.
not to ensure stationary operation, will lead to unfair distribution of wealth
amongst clients. Investment strategies therefore must be "long-term" by
which we explicitly mean they should ensure stationarity and maximize ex-
pected bonus (with respect to the stationary distribution).
This is in potential con�ict with managements objectives whose (career)

horizon supposedly is much shorter. We will therefore assume management
to pursue investment strategies avoiding underfunding at all times but to
optimize return over shorter periods of time.
Our key �nding is that an aggressive (short-term) investment strategy

does not always lead to higher long-term expected bonus. When manage-
ment pursues investment strategies protecting funding, such strategies are a
tight balance between (dynamically) getting out of risky investments if fund-
ing becomes low and (dynamically) scaling up risky assets when funding is
high. The continuous re-allocation in and out of risky assets will in general
lead to higher realized bonus to clients the faster the allocation into risky
assets are. In some situations, though, dynamical asset allocation becomes
counter-productive such that the company is trapped at low funding levels
in long periods . . . unable to attribute bonus. Such bonus lapses obviously
will deteriorate long-term expected bonus to clients and can be controlled if
companies voluntarily decide an "equity cap" which de�ne an upper limit to
investment risk regardless of the funding status.

1.1. Background. Stochastic models for pension funds have been devel-
oped by several authors on de�ned bene�t: Owadally and Haberman (2004);
Cairns (1996), and on de�ned contribution: Briys and de Varenne (1997);
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Briys and de Varenne (2001); Grosen and Jørgensen (2000); Grosen and Jør-
gensen (2002). These models are all �nite horizon models, some of them
explicitly allowing insolvency to occur which � in an in�nite horizon setting
� ultimately will lead to the demise of the company.
Of particular interest is the application of stochastic control to the in-

vestment decision which is a rational framework for deducing pension fund
dynamics at in�nite horizons. De�ned bene�t is treated in Cairns (2000);
Ste�ensen (2006) for quadratic utilities which, unfortunately, lead to some-
what counterintuitive investment strategies where the company increases
investment risk at low funding ratios. HARA-utilities (Hyperbolic Absolute
Risk Aversion), as considered in this paper, are also discussed in Cairns
(2000) but leads to either trivial or non-stationary fund operation.
A continuous-time framework for pension schemes taking explicitly both

realized technical and �nancial surplus into account is derived in Norberg
(1999); Ste�ensen (2000); Norberg (2001); Nielsen (2006). Within this
framework stochastic control is applied to derive optimal bonus strategies
for dividend bonus (bonus is an immediate lump sum payment to clients) as
well as bene�t bonus (bonus is converted to (delayed) higher guaranteed pay-
ments) for power utilities in Ste�ensen (2004) which is the essential reference
on bonus within with-pro�ts pension schemes.
For dividend bonus schemes it is shown that the optimal bonus strategy

is to (continuously) pay a fraction of the bonus reserve as bonus where the
bonus reserves are de�ned as the di�erence between the value of assets and
liabilities.
The results on bene�t bonus are more promising since they can be inter-

preted as rationalizing bonus policies as they are actually practiced in real
life. Based on results on utility optimization of durable goods by Hindi and
Huang (1993) it is shown, that the optimal bonus strategy is to continuously
attribute bonus when the bonus reserve crosses some boundary � and then
all funds above this barrier should be attributed.
In the model introduced below bonus will be attributed at discrete points

in time if the funding ratio, ie. assets divided by liabilities, at that time is
su�ciently high. This closely re�ects real life decisions on bonus attribution
where it is decided to spend only a part of the bonus reserve once a year.
The discretization in time naturally is a compromise to the continuous case
� a point supported by Brennan (1993) where it is shown that a speci�c
class of (discrete time) bonus strategies are ine�cient in optimizing terminal
utility.
The sub-periods between bonus attribution also serve as the local hori-

zon over which management optimizes return. In a �nite horizon setting a
terminal HARA-utility with a subsistence level corresponding to a terminal
funding ratio of one is a su�cient condition for an investor to remain funded
during the time-span of the whole period. Investment strategies avoiding in-
solvency are generally known as CPPI strategies (Constant Proportion Port-
folio Insurance), Black and Perold (1992), and are formally treated by Cox
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and Huang (1989) in the unrestricted case, ie. no subsistence level, and in
Teplá (2001) in the restricted case. Optimizing terminal utility in a pension
saving's context is discussed in Gerber and Shiu (2000).

2. The Model

Pension products typically o�ered by pension companies range from stan-
dard annuities to individually tailored contracts. The primary task of the
pension company is therefore to diversify insurance risks, ie. mortality/survival
risk, for its clients whereas the underlying investment vehicle is common to
all contracts. In this way clients of a pension fund are literally joined to-
gether by a common investment destiny � or investment collective. The
investment collective must cover future guaranteed payments on individual
contracts which is assured by a reserve equal to the net present value of the
future cash �ow. Additional surplus (the bonus reserve) also belongs to the
collective but it is the company that decides when � and how much � of
this to distribute as bonus. Managing the bonus reserve is therefore a main
objective of the pension company.

2.1. Capital Market. Investment decisions must necessarily re�ect market
dynamics, investment opportunity, insolvency risk etc. � decisions that all
relate to probabilities of certain events of the operation of the company.
We will call the probability measure, P, governing these events the physical
measure. Later, in Sec. 3.2, we will also be concerned with valuation of
the actions of the company and the equivalent martingale measure will be
introduced.
In principle, a capital market model should encompass a wide range of

assets but it is well known by the Mutual Fund Separation Theorem, Mer-
ton (1971), that for HARA-utility optimizers (that we shall be concerned
with) the optimal asset allocation will always be between a risk-less asset
(if it exists) and an optimal portfolio (at least for di�usions with constant
parameters). For convenience we shall refer to these as 'cash' and 'equity',
respectively.
We therefore formulate the model in the Black-Scholes framework by de�n-

ing a �nancial market consisting of cash yielding a constant rate r, and equity
with price process S = (St)t≥0 following a geometric Brownian motion

(1)
dSt

St
= (r + µ)dt+ σdWt,

where µ is a risk premium, σ is volatility and W is standard Brownian
motion under the (physical) measure, P. Thus investing in 'risky' equity
yields a higher expected return than in risk-less money.

2.2. The Pension Company. The company o�ers a range of life-insurance
products. In our setting, customers insure speci�c lives and receive a guar-
anteed (minimum) payment if the insured dies before a certain date (life
insurance) or the insured survives a certain date (pension).
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Given assumptions of mortality rates of insured lives the future payment
� or bene�t � stream of the company can be computed. In general insur-
ance, the company has to manage any risk originating from uncertainty in
these cash �ows but since our objective is to analyze the common savings
vehicle of the insurance contracts, we will assume that realized cash �ows are
equal to expected cash �ows. Further, we will disregard any cost, underwrit-
ing fee, or other charge and only consider the part of the premium actually
entering the investment collective. In ignoring both systematic and non-
systematic mortality risk we follow the approach of (Briys and de Varenne,
1997; Grosen and Jørgensen, 2000) while eg. Cairns (2000) allows for a non-
systematic component.
At any point in time, t ≥ 0, the company can compute the expected cash

�ow of all contracts and compute the present value. For any (expected) dollar

guaranteed at (future) time T this amounts to e−r(T−t) at time t which is
the (fair value) reserve, Rt. We will subdivide time in equally spaced periods
at times 0 = t0 < t1 < . . . when the company decides to attribute bonus
(or not), cf. the discussion above. For simplicity we will assume that also
premium and bene�t payments fall at these times.
Under the assumptions above � realized cash �ows equal expected cash

�ows � and a constant interest rate in the capital market model the evolution
of the (prospective) reserve during a time interval can be put on retrospective
form:

Rt = Rtie
r(t−ti), where i = max{j ∈ N0 : tj ≤ t}.

The reduction of the reserve computation to retrospective form vastly facil-
itates the multi-period analysis in subsequent sections.
The �nancial health of the investment collective is measured at any time,

t, by the funding ratio, Ft = At/Rt, where At is total assets of the investment
collective.
Key to the with-pro�ts savings scheme is bonus. A scheme which has

found both theoretical and practical application is to distribute a fraction of
the surplus above a certain funding level as bonus, cf. (Briys and de Varenne,
1997; Grosen and Jørgensen, 2000; PGGM, 2006). As discussed in the intro-
duction such strategies have recently been rationalized in Ste�ensen (2004).
In fact it is found optimal continuously to distribute all surplus above a
certain threshold as bonus.
Inspired by this we will assume � on a relative scale � the company

to consider distributing bonus only at the set of times {ti} de�ned above
and that the decision is based solely on the current funding ratio. If the
funding ratio exceeds a certain level, κ, the surplus is distributed among
the investment collective by increasing all guaranteed payments by the same
percentage, rBi in such a way that the funding ratio after bonus attribution
is lowered to κ; otherwise no bonus is attributed. Assuming for simplicity
that any premia and bene�ts due exactly match we thus have

(2) Rti = (1 + rBi )Rti−,
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where Rti− and Rti is the reserve before and after bonus attribution, respec-
tively, and

(3) rBi =

{
0 Fti− ≤ κ,
Fti−−κ

κ Fti− > κ.

Notice that if bonus is attributed then Fti = κ, otherwise Fti = Fti−.
At any time, t, assets are split between equity and cash by the equity

share, γt. The equity share is at the control of the company and � together
with the market dynamics (1) � determines the dynamics of assets of the
collective. We will refer to the particular choice of γt as the investment
strategy of the company. The corresponding balance sheet of the company is
depicted in Table 1.
Finally, the company is under supervision of some (outside) authority, or

Regulator, which (continuously) monitors the funding ratio of the company.
If at any time total assets equals the reserve, At = Rt, the company is
declared bankrupt and policy holders immediately receive the reserve.

Assets Liabilities
equity γtAt Rt reserve
cash (1− γt)At At −Rt bonus reserve

At At

Table 1. Balance sheet of the company: Assets are split
between equity and cash by the equity share, γt, and lia-
bilities are split between the (mandatory) reserve, Rt, and
non-distributed surplus (the bonus reserve).

Given an investment strategy, assets of the investment collective becomes
a stochastic process evolving according to the stochastic di�erential equation

(4)
dAt

At
= (r + γtµ) dt+ γtσdWt.

Since liabilities and bonus are completely speci�ed in terms of assets, At, the
dynamics of the full model is completely determined by κ, γt and Wt (or,
equivalently, St).

2.3. Optimal Investment Strategy. During operation the company con-
tinuously must decide the equity share, γt, by balancing risks against re-
wards. We will assume that the investment strategy is the result of an
optimization within each sub-period, [ti, ti+1). To �x ideas we will work on
the time interval [0, T ), representing a given sub-period of the multi-period
model.
We will phrase the optimization as a stochastic control problem where the

aim is to optimize the expected value of a utility function K. We will assume
that the utility function is a function of terminal funding ratio before bonus
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attribution, FT−, only and impose the restriction Ft ≥ 1 for all t ∈ [0, T ),
ie. management will only pursue "safe" investment strategies ensuring the
survival of the company. In particular, this requires that the company starts
out being funded. Investing all assets in cash is an example of a safe strategy
resulting in a constant funding ratio. This strategy, however, is in general
not optimal.
It turns out that requiring the funding ratio process to stay at or above

1 at all points in time is equivalent to the apparently weaker condition that
only the terminal funding ratio should be greater or equal to 1. Intuitively,
this is clear since once the funding ratio drops below 1 there exists no in-
vestment strategy under which the company can be funded at a later time
with certainty. The optimization problem can thus be stated as �nding the
optimal strategy, γ̂, and the corresponding funding ratio process, F γ̂ , such

that F γ̂
T− ≥ 1 and

(5) E[K(F γ̂
T−)] = sup

γ
E[K(F γ

T−)],

where the supremum is taken over all strategies γ with F γ
T− ≥ 1.

For general utility functions this constrained optimization can be carried
out using results of (Teplá, 2001). For utility functions with derivative sat-
isfying K ′(1+) = ∞, however, the optimal strategy from an unconstrained

optimization is guaranteed to satisfy the terminal constraint. As optimal
strategies from unconstrained optimizations generally have a simpler struc-
ture than their constrained counterparts we will take the latter approach
since this facilitates further study of the optimal funding ratio process.
Speci�cally, we will consider the following class of increasing, concave utility
functions de�ned for ν < 1 and x ≥ 1

(6) Kν(x) =

{
1
ν (x− 1)ν for ν ̸= 0,

log(x− 1) for ν = 0,

where small values of ν correspond to high risk aversion and values of ν close
to one correspond to low risk aversion. Using the methodology of (Cox and
Huang, 1989) we then have

Theorem 2.1. The funding ratio process solving (5) for Kν is given by

(7) F γ̂
t = (f − 1)e

σ̃2

2
(1−2ν)t+σ̃Wt + 1,

where f ≥ 1 is the initial funding ratio and σ̃ = µ/(σ(1− ν)).
The optimal control is given by

(8) γ̂t =
µ

σ2(1− ν)

F γ̂
t − 1

F γ̂
t

.
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Proof. Problem (5) is equivalent to maximizing the expectation of K̃ν(A
γ
T ),

where

K̃ν(a) =

{
1
ν (a−R0e

rT )ν for ν ̸= 0,

log(a−R0e
rT ) for ν = 0.

It follows from (Cox and Huang, 1989) that the optimal asset process is given
by

Aγ̂
t = G(Zt, t)

= Zt E[K̃
′−1
ν (Z−1

T )Z−1
T |Zt]

= Zt E[(Z
1/(1−ν)
T +R0e

rT )Z−1
T |Zt],

where Z satis�es dZt = (r+ ξ2)Ztdt− ξZtdWt with ξ = −µ/σ. Inserting the
solution ZT = Zt exp((r + ξ2/2)(T − t)− ξ(WT −Wt)) yields

G(Zt, t) =Z
1/(1−ν)
t E[e(

ν
1−ν )(r+ξ2/2)(T−t)− νξ

1−ν
(WT−Wt)]

+R0e
rT E[e−(r+ξ2/2)(T−t)+ξ(WT−Wt)]

=Z
1/(1−ν)
t e

(
νr
1−ν

+ νξ2

2(1−ν)2

)
(T−t)

+R0e
rt.

By use of the boundary condition fR0 = G(Z0, 0) we have

fR0 = Z
1/(1−ν)
0 e

(
νr
1−ν

+ νξ2

2(1−ν)2

)
T
+R0,

and thereby

G(Zt, t) = Z
1/(1−ν)
0 e

( r
1−ν

+ ξ2

2(1−ν)
)t− ξ

1−ν
Wte

(
νr
1−ν

+ νξ2

2(1−ν)2

)
(T−t)

+R0e
rt

= R0(f − 1)e
rt+ ξ2

2(1−ν)2
(1−2ν)t− ξ

1−ν
Wt

+R0e
rt.

Dividing with the reserve, R0e
rt, gives (7).

Further, it follows from (Cox and Huang, 1989) that the optimal control
is given by

γ̂t =
µ

σ2

GZ(Zt, t)Zt

G(Zt, t)
=

µ

σ2(1− ν)

Aγ̂
t −R0e

rt

Aγ̂
t

=
µ

σ2(1− ν)

F γ̂
t − 1

F γ̂
t

.

�

In our setup investment strategies are derived from a short-term optimiza-
tion of investment return (over the sub-periods de�ned by bonus attribution)
and therefore parametrized by the risk-aversion parameter, ν. Later, we will
show that higher ν does not necessarily lead to higher expected bonus.
Therefore, it is the company's (not it's clients) risk-aversion that de�nes ν:

The smaller ν the more risk-averse the company is. Although well-de�ned in
theory determination of risk-aversion in real life can be complicated. Some
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insight into the rôle of the risk-aversion parameter can be found from the
limiting equity share � or equity cap:

(9) γ̂(∞) = lim
f→∞

γ̂(f) =
µ

σ2(1− ν)
.

The risk-aversion parameter basically determines the maximum equity share
the company is allowed to hold, that is, it e�ectively determines an overall
cap to the (dynamic) allocation to equity. In real life most asset managers
would have a clear attitude to the maximal acceptable equity share thereby
indirectly quantifying their aversion to risk.
The equity cap is equal to the constant allocation to equity the company

would hold if acting as a classical portfolio optimizer of terminal HARA util-
ity with no funding constraint, Kν(x) = xν/ν, see (Merton, 1971). Constant
equity allocation strategies are of less interest to our study, though, since
insolvency becomes inevitable in our multi-period setting.
Note that equity shares larger than one correspond to leveraging, ie. bor-

rowing money to invest in equity. Also notice that the bonus policy reduces
the equity allocation at time points t1, t2, . . . tn, thereby potentially forcing
the actual equity allocation far below the equity cap.

3. One Period Dynamics

In this section we will quantify the value to clients of the actions of the
(management of the) pension company over one period. We will compute
both the expected bonus level at the end of the period and the �nancial
value of the bonus option. The analysis shows that for both measures the
greatest value is created for the most aggressive strategies.
The prize for pursuing an aggressive strategy, however, is that it leaves

the company with a low funding ratio with high probability and thereby at
a worse starting point for the next period. The long-term e�ects of these
dynamics on the bonus level and funding ratio distribution will be analyzed
in the next section.

3.1. Expected Bonus Level and Funding Ratio. The level of bonus at
the end of the period and the funding ratio after this bonus attribution are
given by

rB = (FT− − κ)+/κ, FT = min{FT−, κ}.
It follows from Theorem 2.1 after standard calculations that the expected
value of these quantities become

E[rB] =
f − 1

κ
eσ̃

2(1−ν)TN(d1)−
κ− 1

κ
N(d2),

E[FT ] = 1 + (f − 1)eσ̃
2(1−ν)T (1−N(d1)) + (κ− 1)N(d2),

where F0 = f , N is the cumulative normal distribution function, and

d1 =
1√
σ̃2T

(
σ̃2

2
(3− 2ν)T − log

κ− 1

f − 1

)
, d2 = d1 −

√
σ̃2T .
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Fig. 1 shows an example of these expected values as a function of ν for
κ = 1.5 and F0 = 1.25. The expected bonus level diverges to in�nity as ν
approaches one, while the expected funding ratio after bonus tends to one in
the same limit. Thus high equity allocations lead to high expected returns
but also to low funding ratios with high probability.
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Figure 1. Expected bonus level and expected fund-
ing ratio after bonus attribution as functions of ν for
(r, µ, σ, T, κ, F0) = (0.04, 0.05, 0.2, 1, 1.5, 1.25).

3.2. One Period Option Value. From an option point of view the payout
to a policy holder with a payment of 1 due at time T can be considered as an
option consisting of a �xed payment of 1 and � potentially � an additional
bonus if the funding ratio exceeds κ. The total payout, O, to be received by
the policy holder at time T therefore is

O = 1 + (FT− − κ)+/κ.

The equivalent martingale measure, P∗, is the measure under which

(10) W ∗
t = Wt +

µ

σ
t

is Brownian motion, Björk (2004). In terms of W ∗ equity St, cf. (1), evolves
according to

(11)
dSt

St
= rdt+ σdW ∗

t ,

and risk-neutrality is observed from the fact that (e−rtSt)t≥0 is a P∗-martingale.
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The fair value of the option is the expected value of the discounted payout
under the martingale measure P∗. The (time 0) fair value of the option is
thus given by

VO = EP∗
[
e−rTO

]
= e−rT + VB,

where

VB = EP∗
[
e−rT (FT− − κ)+/κ

]
.

Under the risk-neutral measure, P∗, the funding ratio therefore evolves
like

(12) Ft = (F0 − 1)e−
σ̃2

2
t+σ̃W ∗

t + 1,

where σ̃ = µ/(σ(1 − ν)). The result is non-trivial from two perspectives:
First, volatility is inversely proportional to the underlying asset volatility,
and, secondly, equity premium, µ, explicitly enters the equation of the risk-
free dynamics.
It is well known from Black-Scholes option pricing theory that the value

of an option written on S depends solely on the distribution of S under the
equivalent martingale measure, P∗. As this distribution does not depend on
µ nor can the value of an option on S depend on µ.
The explanation to this apparent contradiction is that the bonus option

is an option on the funding ratio process F , or equivalently the asset process
A, rather than on S itself. Since the dynamics of A is the result of an
optimization under the physical measure P the volatility of the process will
depend on both the market price of risk (ie. the ratio µ/σ) and the risk
aversion parameter ν. The result is that volatility and drift are tied together
by the optimal investment strategy hence the explicit dependence on drift of
option prices. This e�ect is also seen in (Teplá, 2001).
Regarding the value of the option standard calculations now give

(13) VB =
e−rT

κ
[(f − 1)N(d1)− (κ− 1)N(d2)]

where f is the initial funding ratio and

d1 =
1√
σ̃2T

(
σ̃2

2
T − log

κ− 1

f − 1

)
, d2 = d1 −

√
σ̃2T .

An example of the value of the bonus option as function of ν is shown in
Fig. 2.
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Figure 2. One-period value of bonus option as function of
ν for (r, µ, σ, T, κ, F0) = (0.04, 0.05, 0.2, 1, 1.5, 1.25).

Non-surprisingly, the value of the bonus option increases with the aggres-
siveness of the investment strategy. A risk-averse management simply creates
less value to its customers � at least in the short run.
Another interesting question is: Where does the money come from? How

can a newly committed T -dollar suddenly be worth more? For entrants to the
pension scheme it really is a free lunch to participate in the bonus programme
from day one. Under our assumption of zero net cash �ow the �free� option
given to a newly contributed dollar is handed over by pensioners receiving
a dollar from the company thereby exactly forfeiting the bonus option on
that dollar. In the general case where eg. the net cash �ow is positive all
current clients �nance the bonus option of entrants since new entrants reduce
overall funding ratio thereby reducing the value of the average bonus option.
Similarly, the value of the average bonus increases when the net cash �ow is
negative. For a quanti�cation of the transfer of wealth between generations
in a collective pension scheme see (Døskeland and Nordahl, 2008).
The value of the bonus option for an investment strategy with a constant

equity share is given in (Jørgensen, 2001).

4. Operating in Stationarity

The life-span of a with-pro�ts contract is very long and it is therefore
essential to analyze the multi-period behavior of the company based on the
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one-period optimization of section 2. For management, operating in station-
arity is of essential job security but also clients have some interest although
this is not completely clear.
In general non-stationarity can arise either from bankruptcy (or near-

bankruptcy) of the company or divergence of the funding ratio to in�nity as
a result of no bonus attribution. From a client's perspective the latter case is
the worst since the company simply keeps surplus returns in the investment
collective to no bene�t of clients. On the other hand, insolvency means the
company is discontinued upon which the client will receive the guaranteed
part of the contract . . . and then simply go to another company. The route
into insolvency could be generous bonus attribution, though, which would
now be guaranteed and therefore included in the transfer to the new com-
pany. The problem in this case is the redistribution of wealth within the
collective where new entrants receive heavily on a bonus option they never
paid for.
In this section we will discuss the existence and characteristics of station-

ary versions of a company run ad in�nitum. More speci�cally, we will study
the stationary distribution of the funding ratio, measured immediately after
annual bonus attribution, ie. ti+1− ti = 1, for a company in which the in�ow
and out�ow of funds exactly match.
Under these assumptions we have that the yearly sampled funding ratio

process, Fi = Fti , evolves as a discrete-time Markov chain with dynamics

(14) Fi = min

{
(Fi−1 − 1)e

σ̃2

2
(1−2ν)+σ̃Ui + 1, κ

}
,

where the Ui's are i.i.d. standard normal variables.

4.1. Existence of Stationarity. Clearly the funding ratio process F is
restricted to lie between 1 and κ for all values of ν. This, however, does not
imply that there exists a stationary distribution for all ν. In fact, we shall
show below that too aggressive strategies, ie. too large values of ν, lead to
non-stationary funding ratio processes which will drift to 1 in the long run.
The funding ratio process is most easily studied via the transformation

Yi = − log

(
Fi − 1

κ− 1

)
,

which transforms the dynamics given in (14) to the simpler dynamics

(15) Yi = (Yi−1 + Vi)
+,

where the Vi's are i.i.d. normally distributed with mean −σ̃2(1− 2ν)/2 and
variance σ̃2. The form (15) lends itself to investigation by Markov chain
theory from which we get the following result

Theorem 4.1. The funding ratio process in (14) admits a stationary distri-
bution if and only if ν < 1/2.
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Proof. It follows from Proposition 11.5.3 of Meyn and Tweedie (1993) that
Y , and hence F , has a stationary distribution if and only if the mean of Vi

is strictly negative, which is satis�ed if and only if ν < 1/2. �

Note that, surprisingly, the result does not depend on the capital market
parameters µ and σ. Regardless of the values of these parameters the process
Y wanders o� to in�nity for ν > 1/2, while for ν = 1/2 the process is so-
called null-recurrent, ie. it returns in�nitely many times to the origin but its
distribution gets more and more di�use. In both cases this implies that the
funding ratio process � although strictly above 1 at all times � gets more
and more concentrated around 1. Thus too aggressive investment strategies
will eventually trap the company at near-bankruptcy.

4.2. Stationary Distribution. The one-sided random walk (15) has been
the object of intense study in the queueing literature, but despite of this
explicit expressions for the stationary distribution are generally unavailable.
Numerically, getting a sample from the stationary distribution is seemingly

easy using either (14) or (15). However, for ν close to 1/2 convergence to
stationarity is slow and it is hard to assess the number of time steps needed
to (approximately) reach stationarity. A better approach is to use the fact
that the stationary distribution of Y is equal to the distribution of

(16) M = max{0, X1, X2, . . .},

where Xi = V1+ . . .+Vi is the underlying, unrestricted random walk, see e.g.
Chapter XII of Feller (1971). Using this representation it is easy to sample
from the stationary distribution within a given tolerance: Simply simulate
the random walk Xi till it gets su�ciently negative and take the maximum
of the path1. Simulated results using this method are shown in Fig. 3.
The representation (16) is also a fundamental tool in the theoretical study

of the stationary distribution of Y .

1The level, b, needed to ensure a distribution with a total variation distance of at most
p from the true stationary distribution can be determined as follows. Let Xt denote a
Brownian motion with drift −σ̃2(1− 2ν)/2 and variance σ̃2, and de�ne the stopping time
τb = inf{t ≥ s : Xt = 0}. It then follows from section 3.5.C of (Karatzas and Shreve,
1991) that P(τb < ∞|Xs = b) = exp((1− 2ν)b) for b < 0. Setting b = log(p)/(1− 2ν) thus
ensures that once Xi gets below b the probability of it ever getting positive again is at
most p. In the paper is used p = 0.001.
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Figure 3. Simulated stationary distribution of funding ra-
tios for (r, µ, σ, κ) = (0.04, 0.05, 0.2, 1.5) and ν = −2/3 (left),
1/6 (middle), and 4/9 (right) corresponding to maximum eq-
uity holdings 25%, 50%, and 75% at κ. Based on 100.000
simulations.

Fig. 3 demonstrates that even when the company completely has removed
insolvency risk an essential tradeo� between risk/reward remains. Risk,
though, is now to be interpreted as stability of operation since risk of in-
solvency has manifestly been removed.
A risk-averse management targeting a low equity share (left panel, ν =

−2/3) will be successful in operating the pension company in a tight funding
ratio regime at � and close to � the maximum attainable level, κ. The
company will be able to attribute bonus at a high frequency since this is
equivalent to the point probability mass at κ.
As investment risk is increased (middle panel, ν = 1/6) the probability of

attributing bonus decreases and � at the same time � a new risk emerges,
that is, a risk of being temporarily trapped at a low funding ratio for a
sustained period of time.
The risk of being trapped at a low funding ratio is even more pronounced

for an aggressive investment strategy (right panel, ν = 4/9) where the com-
pany spends most of its time at (very) low funding ratios and only rarely is
able to attribute bonus.
The paradigm of investment theory is that more risk means a higher ex-

pected return. As we shall see in Sec. 4.3 this only partly holds true for
with-pro�ts contracts since higher risk, ie. a higher equity cap, as a side-
e�ect results in a lower bonus frequency.

4.2.1. Analytical Approximation. A numerical simulation does not give much
insight into the structure of the stationary distribution and we therefore
develop an analytical approximation below. This is based on the special case
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where the tails of Vi are exponential in which case the stationary distribution
of Y is known.
Speci�cally, assume Vi is of the form Ai − Bi − c, where Ai and Bi are

independent and exponentially distributed both with mean 1/λ and c is a
positive constant, then the distribution function of Y is given by

(17) P(Y ≤ y) = 1− λ− ρ

λ
e−ρy,

where 0 < ρ < λ is the solution to the equation

(18) E(eρVi) = 1,

see Chapter XII of Feller (1971). Note that Y has a point mass of size ρ/λ
at 0. Also note that c does not enter explicitly in the expression for the
distribution function, but it is of course present through ρ.
We can use this result to obtain an approximation to the stationary dis-

tribution of Y in the case of interest where Vi is normally distributed. First,
we determine λ to match the variance of Ai −Bi − c to σ̃2,

Var(Ai −Bi − c) =
2

λ2
= σ̃2 ⇔ λ =

√
2

σ̃
.

For the second step one possibility would be to let c = σ̃2(1 − 2ν)/2 and
solve (18) with Vi = Ai −Bi − c to determine ρ. This gives the equation

(19)
λ

λ− ρ

λ

λ+ ρ
= eρc.

However, since this approach does not yield an explicit expression for ρ we
will instead solve (18) with the original normally distributed Vi,

E(eρVi) = 1 ⇔ e−ρσ̃2(1−2ν)/2+ρ2σ̃2/2 = 1 ⇔ ρ = 1− 2ν.

Note that with this choice we are not guaranteed ρ < λ for all ν unless
σ/µ >

√
2 (in case ρ ≥ λ one can use ρ given by (19) instead).

Transforming (17) back to the funding ratio scale we arrive at:

P(F ≤ f) = P(Y ≥ − log[(f − 1)/(κ− 1)])

= 1− P(Y < − log[(f − 1)/(κ− 1)])

≈ 1−
(
1− λ− ρ

λ
eρ log

f−1
κ−1 − ρ

λ
1{κ}(f)

)
=

λ− ρ

λ

(
f − 1

κ− 1

)ρ

+
ρ

λ
1{κ}(f) for 1 ≤ f ≤ κ.(20)

Notice that the probability of giving bonus, ie. the point mass ρ/λ at κ, is
independent of κ. The level at which bonus is attributed therefore does not
a�ect how often bonus is attributed � only how much. The average bonus
attributed therefore in general increase with κ. This point also applies to the
true stationary distribution. Here the point mass is P(F = κ) = P(Y = 0)
which in general does not depend on κ since Y does not depend on κ.
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Fig. 4 shows simulated and approximate cumulative distribution functions
in stationarity of the examples in Fig. 3.
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Figure 4. Cumulative distribution function of simulated
(solid) and approximated (dashed) stationary funding ratios
for (r, µ, σ, κ) = (0.04, 0.05, 0.2, 1.5) and ν = −2/3 (left), 1/6
(middle), and 4/9 (right) corresponding to maximum equity
holdings 25%, 50%, and 75% at κ. Simulated results based
on 100.000 simulations.

From (20) it follows that the point mass at κ, ie. the probability of at-
tributing bonus, is a decreasing function in ν. This is a paradox in pension
fund management: the more aggressive the company invests the smaller the
probability of actually giving a bonus.
Intuitively, the limiting case ν → −∞ is relatively easy to understand:

Assume the company does not invest in equity at all. In this case the funding
ratio remains constant and the company never attributes bonus. Investing
just the tiniest fraction in equity results in a positive drift upward in funding
ratio which � eventually � will allow the company to attribute bonus.
When stationarity is reached, bonus attribution will occur with the highest
frequency possible,

√
2µ/σ, and the funding ratio will stay within a very

narrow range of κ. Obviously, bonuses given are very small.
Aggressive investment strategies, on the other hand, eventually force the

company out of the stationary regime resulting in asymptotic insolvency of
the company. In the transition out of stationarity, ν → 1/2−, the company
will be successful in attributing high bonuses in some years but will in long
periods be trapped at low funding ratios incapable of escape.
The management of a pension company therefore is faced with a di�cult

tradeo� between giving low bonuses at a high frequency or high bonuses at
a low frequency. The value to clients of this choice is the subject of the next
section.
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4.3. Expected Bonus Level and Funding Ratio. A pension contract is
usually composed of a series of premium payments over the working life of
the insured � hopefully followed by many years in retirement. The time-span
of the relation between a customer and the pension company therefore is very
long. It is therefore reasonable to assume that over the life-time of a pension
contract the realized return generated from the guaranteed rate and bonus
e�ectively samples the distribution of bonus attribution which is stationary
if the funding ratio of the company is stationary. If this assumption holds
then the average return on an individual contract equals the average return
of the investment collective as a whole.
As regards the expected funding ratio after bonus attribution in station-

arity this is easily calculated from expression (20)

(21) E[F ] ≈
∫ κ

1
fdG(f) = κ− λ− ρ

λ

κ− 1

ρ+ 1
.

where G is the distribution function.
Calculating the bonus distribution in stationarity and its expectation is

somewhat harder. The dynamics of the funding ratio process gives that
the funding ratio immediately before bonus attribution in stationarity is
distributed as

F− = (F − 1)e
σ̃2

2
ρ+σ̃U + 1,

where F follows the stationary distribution of the funding ratio after bonus
attribution and U is a standard normal variate.
Assuming F is distributed according to G we can obtain an approximation

to the distribution function of F−

(22) G−(f) =

∫ κ

1
H(τ)dG(τ) = H(κ)G(κ)−

∫ κ

1
G(τ)dH(τ)

where

H(τ) = P(F− ≤ f |F = τ) = N

(
− σ̃ρ

2
+

log f−1
τ−1

σ̃

)
.

The last term in (22) can be written

−
∫ κ

1
G(τ)dH(τ)

=
1√
2πσ̃

∫ κ

1

λ− ρ

λ

(
τ − 1

κ− 1

)ρ

e
− 1

2

(
− σ̃ρ

2
+

log
f−1
τ−1
σ̃

)2

1

τ − 1
dτ

=
1√
2πσ̃

∫ log(κ−1)

−∞

λ− ρ

λ

(
f − 1

κ− 1

)ρ

e
− 1

2σ̃2

(
z− σ̃2

2
ρ−log(f−1)

)2
dz

=
λ− ρ

λ

(
f − 1

κ− 1

)ρ

N

(
− σ̃ρ

2
−

log f−1
κ−1

σ̃

)
,
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and we thus have

(23) G−(f) = N(d1) +
λ− ρ

λ

(
f − 1

κ− 1

)ρ

N(d2) for f ≥ 1,

where

d1 = − σ̃ρ

2
+

log f−1
κ−1

σ̃
, d2 = −d1 − ρσ̃.

Note, that we now have two approximations to the stationary probabil-
ity of attributing bonus, 1 − G−(κ) and G({κ}) = ρ/λ. Arguably F− is
"one step closer to stationarity" than F and 1−G−(κ) therefore the better
approximation.
The bonus level then is approximately distributed as the scaled tail of G−

P(rB ≤ r) = P((F− − κ)/κ ≤ r) ≈ G−(κ(1 + r)) for r ≥ 0.

Fig. 5 shows approximate and simulated densities of bonus levels. The
higher the allocation to equity the higher bonus levels become but tails also
become thinner since the probability of not attributing grows as well. Point
masses of zero bonus are therefore indicated as well. A given year's apparent
success of a large bonus resulting from a high equity allocation therefore
can come at the even higher price of a large loss the next year trapping the
company for a long period at a low funding ratio.
The tails of Fig. 5 clearly illustrates the point made several times by now,

that is, that the more aggressive the pension company invests the larger the
bonus becomes . . . but also the rarer.
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Figure 5. Distribution of bonus. Density of simulated (his-
togram) and approximated (line) bonus attribution (rB > 0)
for (r, µ, σ, κ) = (0.04, 0.05, 0.2, 1.5) and ν = −2/3 (left), 1/6
(middle), and 4/9 (right) corresponding to maximum equity
holdings 25%, 50%, and 75% at κ. Point mass for rB = 0
indicated in �gure. Based on 100.000 simulations.



20 MICHAEL PREISEL, SØREN F. JARNER, AND RUNE ELIASEN

Given the approximate distribution function of F− we can derive an ap-
proximation to the expected bonus level in stationarity

E(rB) = E

(
F− − κ

κ
1(F−>κ)

)
=

1

κ

(
E(F−1(F−>κ))− κP(F− > κ)

)
≈ 1

κ

(∫ ∞

κ
fdG−(f)− κ(1−G−(κ))

)
=

1

κ

(∫ ∞

κ
(f − 1)dG−(f) + (1− κ)(1−G−(κ))

)
,

where

dG−(f)

df
=

e−
1
2
d21

√
2πσ̃(f − 1)

+
λ− ρ

λ

(
f − 1

κ− 1

)ρ
(

ρ

f − 1
N(d2)−

e−
1
2
d22

√
2πσ̃(f − 1)

)
.

After lengthy, but tedious, calculations similar to those leading to G− we
arrive at

E(rB) ≈ κ− 1

κ

(
ρ(λ+ 1)

λ(ρ+ 1)
e

σ̃2

2
(ρ+1)N(

σ̃ρ

2
+ σ̃) +

λ(ρ+ 2)− ρ

λ(ρ+ 1)
N(− σ̃ρ

2
)− 1

)
.

The expected bonus level and the expected funding ratio after bonus at-
tribution in stationarity as functions of ν are shown in Fig. 6. The ex-
pected bonus level attains its maximum when management shows moderate
restraint on aggressiveness and chooses ν = 0.063 corresponding to an equity
allocation of 44% at κ. Comparing with Fig. 1 for the one-period case, the
expected bonus level in both cases tend to zero for ν → −∞. However, in
contrast to the one-period case the stationary bonus level also tends to zero
for ν → 1/2−. This is caused by the deterioration of the funding ratio as
shown in the right panel of Fig. 6.
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Figure 6. Approximate expected bonus level and expected
funding ratio after bonus attribution in stationarity as func-
tions of ν for (r, µ, σ, κ) = (0.04, 0.05, 0.2, 1.5). Maximum
expected bonus of 1.35% is attained at ν = 0.063.

For investment strategies derived from high risk-aversion, ie. low ν, the
paradigm of classic investment theory still holds and expected return in-
creases with risk. But a maximum to expected bonus must exist since the
equity holding goes to zero for ν → −∞ and the probability of receiving a
bonus goes to zero as ν → 1/2− which in both cases lead to an expected
bonus level of zero. Thus in general the maximum stationary bonus level
must be attained for a risk-aversion level strictly between −∞ and 1/2.
The analysis above applies to a single bonus attribution in the future

(stationarity). However, since a typical pension contract runs for many years
it is also of considerable interest to study the accumulated e�ect of a number
of consecutive bonus attributions. This extension involves a detailed study
of the correlation structure of bonus attributions over time and is carried out
in (Kryger, 2008). Approximations to the terminal value distribution of a
contract receiving smoothed annual returns are given in (Jørgensen, 2007).

5. Conclusion

We have investigated the e�ects of investing for retirement through a with-
pro�ts pension scheme. We have assumed that management of the pension
company acts as a one-period optimizer according to a terminal utility that
quanti�es preferences for risk versus returns. The utility of terminal wealth
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can be thought of as weighting the commercial and competitive advantages
of high returns against the risks of low returns . . . for the company.
Clients of with-pro�ts pension schemes are not one-period optimizers but

participate in the scheme for many consecutive periods. What seems to be
a series of sound, optimal short-term investment decisions is therefore not a
su�cient condition to ensure long-term stability. This is because previous
years' losses directly depress coming years' returns - potentially for a very
long time.
To clients � and management � operating the company in stationarity

therefore is of crucial importance: to clients lack of stationarity either means
bankruptcy or near-bankruptcy of the company or divergence in funding ratio
both resulting in loss of expected bonus; to management loss of status and
personal income. We showed that the existence of stationarity e�ectively is
a restriction to the class of utilities considered.
Given the company is operated in stationarity the excess return to clients

in our model samples the stationary distribution of the funding ratio which
results also in stationarity of bonus levels. We showed that expected bonus
level must attain a maximum value within the range of valid (stationary)
utilities because expected bonus towards both end-points of this range is
zero.
In conclusion the optimal performance of a pension contract from a client's

perspective is therefore not attained for the most aggressive (one-period) in-
vestment strategy allowed within the stationary regime but at a more mod-
erate investment strategy. A company's incentive to boast high (period)
returns therefore can be in con�ict with the best interests of its clients.
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