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Abstrat

The purpose of the paper is twofold. First, we onsider entrane times of random walks,

i.e. the time of �rst entry to the negative axis. Partition sum formulas are given for entrane

time probabilities, the n
th

derivative of the generating funtion, and the n
th

falling fatorial

entrane time moment. Similar formulas for the harateristi funtion of the position of the

random walk both onditioned on entry and onditioned on no entry are also established.

Seond, we onsider a model for a with-pro�ts olletive pension fund. The model has

previously been studied by approximate methods, but we give here an essentially omplete

theoretial desription of the model based on the entrane time results. We also ondut

a mean-variane analysis for a fund in stationarity. To failitate the analysis we devise a

simple and e�etive exat simulation algorithm for sampling from the stationary distribution

of a regenerative Markov hain.
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1 Introdution

This paper analyzes a �with-pro�ts olletive pension sheme�; this type of sheme and variants

hereof are widespread, among other plaes, in the Nordi ountries and the Netherlands. Mem-

bers of the sheme are guaranteed a minimum bene�t. The guarantees are a liability for the

pension fund for whih it must reserve an amount of money equal to the net present value of

future guaranteed bene�ts (the reserve). In addition to the already guaranteed bene�ts members

may reeive bonuses in the form of inreased guarantees. Bonuses are attributed periodially,

e.g. annually, when the ratio of total assets to the reserve (the funding ratio) is su�iently high.

The phrase �with-pro�ts� refers to this pro�t-sharing mehanism.

Assets in exess of the reserve are termed the bonus potential. The bonus potential allows the

fund to invest in risky assets by absorbing adverse investment results. The sheme is �olletive�

in the sense that the bonus potential is onsidered ommon to all members. It is also olletive in

the sense that the investment strategy and bonus poliy is the same for all members. Colletive

funds generally bene�t from eonomy of sale in the form of low administration and investment

osts. The �ip side is the lak of an individual investment strategy.

We onsider a model for a olletive pension fund in whih a bonus is attributed when the

funding ratio exeeds a given bonus threshold. The fund follows a CPPI (Constant Proportion

Portfolio Insurane) investment strategy in order to stay solvent, i.e. to ensure that total assets

exeed the reserve. The paper gives an essentially omplete desription of the fund dynamis

inluding the time between bonuses, the (onditional) expeted bonus perentage and the (on-

ditional) expeted funding ratio. The analysis is based on a detailed study of an embedded

one-sided random walk obtained by a transformation of the funding ratio proess sampled at the

disrete set of time points where a bonus an be attributed. We onsider both a fund starting

at the bonus threshold and a fund in stationarity. Furthermore, we use the results to perform a

mean-variane analysis of a standardized bene�t payout. The analysis is performed for a fund

in stationarity representing the �average� member. To failitate the analysis we also employ an

exat simulation algorithm, whih might be of independent interest.

The theoretial foundation for the analysis is a series of new results for entrane times of

random walks derived in this paper. For a random walk started at the origin the entrane time

is the time of entry into (−∞, 0]. The main theoretial results are partition sum formulas for the

nth derivative of the entrane time generating funtion and for the nth falling fatorial entrane

time moment. The latter result generalizes the well-known formula for the mean entrane time.

We also give a partition sum formula for entrane time probabilities, and a similar formula for

the position of the random walk onditioned on entrane at time n. These results are impliit
in Spitzer (1956) and Asmussen (2003), but the proofs are new and simpler. Finally, we give a

new partition sum formula for the position of the random walk onditioned on entrane taken

plae after time n.
The results allow expliit alulations of the entrane time probabilities and moments in terms

of the marginal distribution of the random walk. The omputational e�ort gradually beomes

prohibitive, but the �rst 100, say, entrane time probabilities and moments are omputationally

feasible. We use the results to study the one-sided random walk embedded in the funding ra-

tio proess by utilizing the fat that a one-sided random walk and its assoiated (unrestrited)

random walk are idential up to the time of �rst entry into (−∞, 0]. However, the results are

generally appliable and not limited to our pension fund appliation.

Optimizing utility from terminal wealth for an individual saving for retirement is treated by

numerous papers. The foundation was laid by Rihard (1975) and to mention a few, who among

other results obtain optimal investment strategies, there is, Huang andMilevsky (2008) who allow

for unspanned labor inome; Huang et al. (2008) who separate the breadwinner inome proess

from the family onsumption proess; Ste�ensen and Kraft (2008) who generalize to a multi-

state Markov hain framework typially used by atuaries for modeling a series of life history

events; Bruhn and Ste�ensen (2011) who generalize to a multi-person household, with fous on

a married ouple with eonomially and/or probabilistially dependent members; Kwak et al.
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(2011) who also onsider a household but fous on generation issues; Kronborg and Ste�ensen

(2013) who alulate the optimal investment strategy for a pension saver in the presene of a

minimum rate guarantee; and Gerber and Shiu (2000) who present a omprehensive disussion

of terminal utility optimization in a pension saving ontext. There is also a vast literature on

modern investment management, founded by Markowitz (1952) and Merton (1971), aimed at

�nding optimal investment strategies without the pension aspet.

In ontrast to the literature ited above this paper takes the point of view of a pension

fund where a group of people share a ommon investment strategy. Investment gains are shared

through a bonus strategy by whih olletive funds above a threshold are transferred to individual

guarantees. Based on results on utility optimization of durable goods by Hindi and Huang

(1993) it an be shown that the optimal bonus strategy is to ontinuously attribute bonuses

whenever the funding ratio exeeds a ertain barrier � thereby not allowing the funding ratio

to exeed the barrier. In this paper, and in real life, the transfer is done periodially rather than

ontinuously. Referenes for ontinuous-time analysis of pension shemes taking both assumed

(tehnial) returns, realized returns and bonus into aount inlude Norberg (1999), Ste�ensen

(2000), Norberg (2001), Ste�ensen (2004) and Nielsen (2006).

We assume the fund to follow a CPPI strategy. This strategy ensures that the fund remains

funded, and it is �loally� optimal if we onsider the periods between possible bonus attributions

as loal horizons. More preisely, Preisel et al. (2010) point out that CPPI is optimal in a �nite

horizon setting with HARA-utility and a subsistene level orresponding to a terminal funding

ratio of one. CPPI strategies are treated, for the unrestrited ase, by Cox and Huang (1989),

and for the restrited ase, by Teplá (2001). Using a CPPI strategy, and thereby avoiding insol-

veny, as done in this paper, stands in ontrast to the literature on onstruting ontrats that

are fair between owners and poliyholders, see e.g. Briys and de Varenne (1997) and Grosen and

Jørgensen (2000).

The urrent paper is related to Preisel et al. (2010), Kryger (2010) and Kryger (2011). We use

the same underlying funding ratio dynamis, but the pension produt and the terms by whih

members enter and leave the fund di�er. In the ited papers members pay a �xed share (possibly

zero) of ontributions to the bonus potential on entry. This raises a number of issues regarding

intergenerational fairness. In the present setup the share depends on the funding status of the

fund in suh a way that the ontrat is always �nanially fair. Methodologially, the ited papers

use various analytial approximations while the urrent paper relies almost exlusively on exat

results.

The main insight of Preisel et al. (2010) is that a given year's apparent suess of a large

bonus resulting from a high equity alloation an ome at the even higher prie of subsequent

large losses trapping the ompany at a low funding ratio for a long period. They also derive

approximations to the expeted bonus and funding ratio in stationarity. Kryger (2010) �nds

optimal investment strategies for power utility and mean-variane riteria. For �xed values of

the bonus threshold, he �nds optimal investment strategies in the lass of CPPI strategies for a

fund in stationary. It is found that di�erent investment strategies imply only modest di�erenes

in utility and, hene, that an investment olletive an aommodate quite di�erent attitudes

towards risk. Finally, Kryger (2011) studies the impat of the pension design on e�ieny and

intergenerational fairness.

The rest of the paper is organized as follows. Setion 2 presents the theoretial ontributions

on entrane times and moments of random walks. Setion 3 desribes the pension fund model,

and Setion 4 applies the random walk results to study bonus waiting times, the bonus size and

the funding ratio. Results are given for a fund started at the bonus threshold and for a fund in

stationarity. Setion 5 ontains a omprehensive appliation inluding a mean-variane analysis.

It also explains the exat simulation algorithm used in the analysis. Finally, the appendix

ontains proofs for the results of Setion 2 and additional lemmas.
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2 Random walks

In this setion we present a series of results on entrane times and onditional harateristi

funtions of random walks. The results will be used in subsequent setions to provide a detailed

desription of the distribution of bonus times, bonus size and the funding ratio of the olletive

pension fund model under study. However, the results are generally appliable and an be

applied in many other ontexts as well.

The entrane time of a random walk is de�ned as the (�rst) time of entry into (−∞, 0] after
time 0. The results to follow devise how a number of quantities related to entrane times an

be omputed as sums over partition sets. We present both new results and existing results with

new and simpler proofs. The results fall in three parts.

First, we derive a losed-form formula for the entrane time probabilities of a random walk

started at the origin (Theorem 2.3). This result is also impliit in the seminal paper by Spitzer

(1956), but we give here a simpler self-ontained proof. Seond, we derive an expression for

the nth derivative of the generating funtion for the entrane time (Theorem 2.5), whih we

subsequently use to derive a formula for the fatorial moments (Theorem 2.6). These results are

new. Third, we derive formulas for the harateristi funtion of the position of the random walk

onditioned on entrane at time n (Theorem 2.8) and on entrane after time n (Theorem 2.9).

The �rst of these results is known, but the proof is new, while the seond result is new. Most of

the proofs rely on ombinatorial arguments, some of whih might be of independent interest, in

partiular Lemma A.1.

2.1 Entrane times and partitions

Consider the random walk

S0 = 0 and Sn = Sn−1 +Xn for n ∈ N, (1)

where X1, X2, . . . are i.i.d. random variables. Following the notation and terminology of As-

mussen (2003) we let τ− denote the entrane time to (−∞, 0], also known as the �rst (weak)

desending ladder epoh, de�ned by

τ− = inf{n ≥ 1 : Sn ≤ 0}. (2)

In this setion our prime interest is the alulation of the entrane time probabilities

τn = P (τ− = n) = P (S1 > 0, . . . , Sn−1 > 0, Sn ≤ 0), (3)

i.e. the probability that the entry into (−∞, 0] ours at the nth step. To failitate the study of

(τn)n∈N we introdue its generating funtion, de�ned for 0 ≤ s ≤ 1 by

τ(s) =
∞∑

n=1

τns
n. (4)

Let pn = P (Sn ≤ 0) for n ≥ 1. The following surprising theorem, originally due to Andersen

(1954)

1

, expresses τ in terms of the (marginal) probabilities pn. The original proof is ompliated
but a simple ombinatorial proof now exists, see e.g. Theorem XII.7.1 of Feller (1971).

Theorem 2.1. (Sparre Andersen Theorem) For 0 ≤ s < 1

log

(
1

1− τ(s)

)
=

∞∑

n=1

sn

n
pn. (5)

1

Erik Sparre Andersen (1919�2003) was a Danish mathematiian and atuary. He played a prominent role in

the design and operation of the Danish Labour Market Supplementary Pension Sheme (ATP) from its foundation

in 1964 and in the years to follow. The results of this paper rest to a large extent on the work of our former

olleague.
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By Theorem 2.1 we an write the generating funtion as

τ(s) = 1− eH(s), where H(s) = −
∞∑

n=1

sn

n
pn. (6)

Now, sine

τn =
τ (n)(0)

n!
, (7)

where τ (n) denotes the nth derivative of τ , the entrane time probabilities an in priniple be

alulated by repeated di�erentiation of expression (6). However, diret di�erentiation leads

to an exponentially inreasing number of terms (the number of terms almost triples on eah

iteration) so this approah is infeasible in pratie for all but the smallest n. Fortunately, the

number of di�erent terms is substantially smaller. This observation gives rise to a summation

formula whih makes it omputationally feasible to alulate τn for n up to at least 100. In order
to state the result we de�ne the set of integer partitions of a given order.

De�nition 2.1. De�ne for n ≥ 1 the partition set of order n by

Dn =

{
(σ1, . . . , σn)

∣∣∣σ1 ∈ N0, . . . , σn ∈ N0,

n∑

i=1

iσi = n

}
, (8)

where N0 = {0, 1, 2, . . .}. For n = 0, D0 is the set ontaining the empty partition.

To illustrate the de�nition note that D1 = {(1)} and D2 = {(2, 0), (0, 1)}. Integer partitions
our in number theory and ombinatoris, and the size of Dn as a funtion of n (the partition

funtion) is a well-studied objet. The following asymptoti expression is due to Hardy and

Ramanujan (1918)

#Dn ≈
1

4n
√
3
eπ
√

2n/3. (9)

We note that the size of Dn inreases sub-exponentially in n.
For later use, we de�ne for σ ∈ Dn the sign of the partition and two ombinatorial oe�ients

sgn(σ) = (−1)
∑

n
i=1 σi , dσ =

n∏

i=1

σi! i
σi , cσ =

n!∏n
i=1 σi!(i!)σi

. (10)

We also need the following fundamental identity often used in onnetion with generating

funtions, see e.g. Chapter 7 of Szpankowski (2001) for a proof.

Theorem 2.2. Provided

∑∞
n=1 anb

n
onverges absolutely

exp

( ∞∑

n=1

anb
n

)
= 1 +

∞∑

m=1

∑

σ∈Dm

bm

σ1!σ2! · · ·σm!

m∏

n=1

aσn

n . (11)

A ombination of Theorems 2.1 and 2.2 yields a partition sum formula for the entrane time

probabilities in terms of the probabilities pn. This result an also be derived from Spitzer (1956),

but the present proof is onsiderably simpler.

Theorem 2.3. For n ≥ 1

τn = −
∑

σ∈Dn

sgn(σ)

dσ

n∏

i=1

pσi

i . (12)

Proof. See Appendix A.1.
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n 1 2 3 4 5 10 40 100 200

#Dn 1 2 3 5 7 42 37338 1.9057 · 108 3.9730 · 1012
#Naive 1 2 4 10 26 5.476 · 103 1.1257 · 1018 4.7720 · 1046 2.4594 · 1094

Table 1: Number of terms needed to alulate the entrane time probabilities by formula (12)

and (7), respetively.

Provided pn are available Theorem 2.3 makes it feasible to alulate entrane time proba-

bilities for fairly large values of n. Table 2.1 shows the size of Dn, i.e. the number of terms

in the partition sum (12), and the number of terms when (7) is used diretly.

2

Clearly, the

omputational gain is massive.

Theorem 2.3 also provides the following purely ombinatori result (whih is used in the

proof of Lemma A.1). For n ≥ 2
∑

σ∈Dn

sgn(σ)

dσ
= 0. (13)

This follows from (12) by onsidering the degenerate ase Xi ≡ 0 in whih ase pn = 1 for all n,
τ1 = 1 and τn = 0 for n ≥ 2.

The oe�ients dσ obey a number of other interesting relations, e.g. the following theorem

whih shows that 1/dσ an be interpreted as a probability distribution on Dn. The proof of the

theorem also serves as an illustration of the ombinatorial method used throughout.

Theorem 2.4. For n ≥ 1 and 1 ≤ k ≤ n

∑

σ∈Dn

1

dσ
=
∑

σ∈Dn

kσk

dσ
= 1. (14)

2.2 Entrane time moments

In priniple the entrane time moments (and other harateristis) an be alulated from the

entrane time probabilities, τn. However, sine the alulation of τn beomes inreasingly di�-

ult it is both theoretially and pratially important to have more diret means of alulating

moments. In this setion we present a formula for the falling fatorial entrane time moments,

E((τ−)n), where for integers m and n we denote by (m)n the nth falling fatorial of m,

(m)n = m(m− 1) · · · (m− n+ 1). (15)

In partiular, (m)1 = m and (m)n = 0 for n > m. Our result generalizes the well-known formula

for the mean entrane time

3

E(τ−) = exp

( ∞∑

k=1

1

k
P (Sk > 0)

)
. (16)

The formula for the fatorial moments relies on the following main result whih gives a

partition sum representation of the nth derivative of the generating funtion. We denote by f (n)

the nth derivative of a funtion f .

Theorem 2.5. For n ≥ 1 and 0 ≤ s < 1

τ (n)(s) = −eH(s)
∑

σ∈Dn

cσHσ(s), (17)

where cσ is given by (10) and

Hσ(s) =
n∏

i=1

(
H(i)(s)

)σi

. (18)

2

The number of terms obtained by di�erentiating the generating funtion n times without olleting terms.

3

Expression (16) an be derived from Theorem 2.1 by a limit argument, see e.g. Theorem XII.7.3 of Feller

(1971).
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Proof. See Appendix A.2.

Note that Theorem 2.3 an be derived from Theorem 2.5 sine τn = τ (n)(0)/n! and H(i)(0) =
−(i− 1)! pi. This onstitutes an alternative proof of Theorem 2.3 whih does not rely on Theo-

rem 2.2.

By monotone onvergene the nth fatorial moment of τ− is given by

E((τ−)n) = lim
s→1−

τ (n)(s), (19)

whether or not the limit is �nite. Using Theorem 2.5 and (19) in a ombination with Lemmas A.1

and A.2 the following result for the nth fatorial moment an be derived.

Theorem 2.6. If n ≥ 1 and

∑∞
k=1 k

n−2P (Sk > 0) < ∞ then

E((τ−)n) = exp

( ∞∑

k=1

1

k
P (Sk > 0)

)
n!

∑

σ∈Dn−1

n−1∏

i=1

(
hi

i!

)σi 1

σi!
< ∞, (20)

where, for n = 1, the last sum is 1 by de�nition, and for 1 ≤ i ≤ n− 1

hi =

∞∑

k=i

(k)i
k

P (Sk > 0). (21)

Proof. See Appendix A.2.

By use of Theorem 2.6 we an alulate entrane time moments of any order. For the �rst

three moments we get

E (τ−) = exp

( ∞∑

k=1

qk
k

)
, (22)

E
(
τ2−
)
= E((τ−)2) + E(τ−) = E (τ−)

(
2

∞∑

k=1

qk + 1

)
, (23)

E
(
τ3−
)
= E((τ−)3) + 3E((τ−)2) + E(τ−)

= E (τ−)

(
3

∞∑

k=2

(k − 1)qk + 3
∞∑

k=1

qk

[ ∞∑

k=1

qk + 2

]
+ 1

)
, (24)

where qk = 1 − pk = P (Sk > 0). These formulas are all easy to evaluate to any desired degree

of auray.

2.3 Conditional harateristi funtions

In this setion we present results haraterizing the position of the random walk upon entrane

to (−∞, 0] (the weak desending ladder height) and the position when entrane has not yet

ourred. We will need the ombined generating and harateristi funtion de�ned for |s| < 1
and ζ ∈ R by

χ(s, ζ) = E
(
sτ−eiζSτ

−

)
. (25)

For a random variable X and an event A we write E(X ;A) for E(X1A), and E(X |A) for
E(X1A)/P (A). From Theorem VII 4.1 of Asmussen (2003) we have the following generalization

of Theorem 2.1

Theorem 2.7. For |s| < 1 and ζ ∈ R

log

(
1

1− χ(s, ζ)

)
=

∞∑

n=1

sn

n
E
(
eiζSn ;Sn ≤ 0

)
. (26)
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By ombining Theorems 2.7 and 2.2 we obtain a partition sum formula for the harateristi

funtion of the random walk given entrane to (−∞, 0] at time n. This result is similar to

Theorem 2.3 for the entrane time probabilities.

Theorem 2.8. For n ≥ 1 and ζ ∈ R

E
(
eiζSn |τ− = n

)
= − 1

τn

∑

σ∈Dn

sgn(σ)

dσ

n∏

k=1

(
E
(
eiζSk ;Sk ≤ 0

))σk
. (27)

Proof. See Appendix A.3.

It is also of interest to know the distribution of the random walk given that it has not yet

entered (−∞, 0]. It turns out that the harateristi funtion for this distribution an also be

alulated as a partition sum. The result is established by subtrating the harateristi funtion

of Theorem 2.8 up to time n from the unonditional harateristi funtion and using Lemma A.1

to identify the resulting struture.

Theorem 2.9. For n ≥ 1 and ζ ∈ R

E(eiζSn |τ− > n) =
1

P (τ− > n)

∑

σ∈Dn

1

dσ

n∏

k=1

(
E(eiζSk ;Sk > 0)

)σk
. (28)

Proof. See Appendix A.3.

Note that if P (τ− < ∞) = 1 then P (τ− > n) = 1 −
∑n

i=1 τi suh that (28) an indeed be

alulated.

3 Pension fund model

We onsider a model for a olletive pension fund with a with-pro�ts pension produt. Eah

ontribution is split into a part giving a guaranteed payment and a part invested in a, possibly

leveraged, investment portfolio. The produt is with-pro�t in the sense that all guaranteed pay-

ments are inreased, known as bonus, when the funding ratio exeeds a given threshold level.

The investment strategy and the bonus poliy are ommon and all members reeive the same

bonus (perentage). In our model members enter and leave the fund on �nanially fair terms,

although this is not neessarily stritly true in pratie. Despite its simpliity the model re-

sembles the traditional olletive pension funds known from e.g. the Nordi ountries and the

Netherlands. The random walk results presented in Setion 2 will be used to give an essentially

omplete desription of the dynamis of the fund.

First, onsider a fritionless Blak-Sholes market onsisting of a bank aount, B, with risk

free short rate, r, and a risky stok, Z, with dynamis given by

dB(t) = rB(t)dt, B(0) = 1, (29)

dZ(t) = (r + µ)Z(t)dt+ σZZ(t)dW (t), Z(0) = z0 > 0. (30)

Here r, µ and σZ are stritly positive onstants. The proess W is a standard Brownian motion

on the probability spae (Ω,F , P ) equipped with the �ltration FW = (FW (t))t≥0 given by the

P -augmentation of the �ltration (σ{W (s); 0 ≤ s ≤ t})t≥0.

The deision to attribute a bonus or not is taken at a set of equidistant, disrete set of time

points 0 = t0 < t1 < . . .. We assume for simpliity that ontributions and bene�ts also fall at

these times. The market value of the guaranteed bene�ts, the reserve, is denoted R(t). Assuming
that mortality risk an be negleted by the law of large numbers (paramount to assuming that
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realized mortality equals expeted mortality) the evolution of the reserve between potential

bonus times is given by

R(t) = R(ti)e
r(t−ti), where i = max{j ∈ N0 : tj ≤ t}. (31)

The total assets of the fund are denoted A(t) and the funding ratio of the fund is de�ned as

F (t) =
A(t)

R(t)
. (32)

The di�erene between total assets and the reserve, A(t)−R(t), is alled the bonus potential (or

surplus). We assume that the fund attributes bonuses aording to a threshold bonus strategy

suh that at time ti all guaranteed payments are inreased by

rBi =

{
0 if F (ti−) ≤ κ,
F (ti−)−κ

κ if F (ti−) > κ,
(33)

where κ is assumed to be stritly larger than 1. Note that immediately after a bonus attribution
the funding ratio equals κ. Let F̃i denote the funding ratio at time ti after a (possible) bonus

attribution, but before ontributions and bene�ts have fallen. Thus F̃i = F (ti−)/(1 + rBi ) =
min{F (ti−), κ}.

The pension produt:

• Contributions do not a�et the funding ratio, i.e. for ontributions reeived at time ti only
the fration 1/F̃i is guaranteed (at rate r) and enters the reserve while the remainder enters
the bonus potential.

• The initially guaranteed bene�t is entitled to bonuses from the time of ontribution to the

time of payment.

• Bene�ts do not a�et the funding ratio, i.e. guaranteed bene�ts paid out at time ti are
inreased by F̃i (terminal bonus).

Note that the fration of ontributions guaranteed at the risk-free rate depends on the urrent

funding ratio of the fund. Also note that for eah ontribution the member pays a prie to enter

the olletive fund, but he also reeives his share of the surplus for eah bene�t paid out.

Let ci and bi denote the ontributions and bene�ts, respetively, at time ti, and let cGi and

bGi denote the part of ontributions and bene�ts guaranteed. Total assets and the reserve at

time ti is then given by

A(ti) = A(ti−) + ci − bi, (34)

R(ti) =
(
1 + rBi

)
R(ti−) + cGi − bGi , (35)

where cGi = ci/F̃i and bGi = bi/F̃i. Hene, by onstrution F (ti) = F̃i irrespetive of the size

of ontributions and bene�ts. It is not hard to show that the fat that pension savers enter

and leave the pension fund without e�eting the funding ratio makes the sheme �nanially fair.

There is no redistribution of wealth between generations.

We assume that the pension fund has to stay funded at all times, i.e. its assets must not

fall below the reserve or, equivalently, the funding ratio must not fall below one. In order to

ahieve this the fund pursues a CPPI (onstant proportion portfolio insurane) strategy by whih

a onstant fration, C, of the bonus potential is invested in stoks. The remaining assets are

invested in the risk-free asset. We allow for values of C greater than one, i.e. leverage of the

bonus potential is possible. The dynamis of the assets between time ti and ti+1 is given by

dA(t) = (r + γ(t)µ)dt+ γ(t)σZdW (t), (36)
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where γ(t) = C F (t)−1
F (t) .

Let ∆ denote the time between possible bonus attributions, ti = i∆, and let Fi = F (ti).
It follows from Preisel et al. (2010) that the funding ratio proess sampled at ti evolves like a
(disrete-time) Markov hain with dynamis

Fi = min
{
(Fi−1 − 1)e(Cµ− 1

2C
2σ2

Z)∆+CσZ

√
∆Ui + 1, κ

}
, (37)

where the Ui's are i.i.d. standard normal variables. In partiular, if F0 > 1 all subsequent Fi's

are stritly larger than 1 (and at most κ).
The fund has to deide on an investment strategy, C, and a bonus poliy, κ. A high bonus

threshold implies that the fund an invest more freely but also that only a small fration of

the pension is guaranteed. This may or may not be in the interest of the members. Similarly,

an aggressive investment strategy implies a higher probability of very high returns, but also a

higher risk of very low returns (on the bonus potential).

3.1 Example

In this example we illustrate how an individual �ts into the pension sheme. The pension saver

enters the pension sheme (today) at age 25 and retire at age 65. Yearly pension ontributions are

paid until the time of retirement, with initial payment set at 2000 EUR and further ontributions,

assuming he is alive, inreased with the risk-free rate, i.e.

ĉi = 2000er(i−25), for i = 25, . . . , 64. (38)

The guaranteed part of the ontributions beome ĉGi = ĉi/κ. As mentioned, the evolution of

the total reserve of the pension sheme, given by (31), assumes that realized mortality equals

expeted mortality. This is realisti due to the law of large numbers. However, obviously

mortality annot be negleted when onsidering the individual poliyholder's realized ash �ow.

In this example we model mortality by a Gompertz-Makeham hazard rate, u(x) = exp((x −
m)/b)/b, with modal value and sale parameter as in Milevsky and Young (2007); (m, b) =
(88.18, 10.5). Let ni denote the probability of survival until age i

ni = exp

(
−
∫ i

25

µ(s)ds

)
, for i ≥ 25.

By use of lassi atuarial notation we an write the at age i apital value of one unit of a life

annuity as

ai =

∞∑

j=65

nj

ni
e−r(j−i), i = 25, . . . , 64.

The part of the ontribution ĉGi is at the time of payment turned into a guaranteed life long ash

�ow starting upon time of retirement. The guaranteed bene�t reeived by the poliyholder at

age i, not taking bonus attributions into aount and assuming he is alive, beomes (does not

depend on age)

b̂
G(no bonus)
i =

64∑

j=25

ĉGj
aj

, for i = 65, . . . ,∞. (39)

The guaranteed bene�t reeived by the poliyholder at age i, taking bonus attributions into

aount, and assuming he is alive, beomes

b̂Gi =

64∑

j=25


 ĉGj

aj

i∏

k=j+1

(1 + rBk )


 , for i = 65, . . . ,∞. (40)
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In addition the poliyholder reeives a terminal bonus suh that the total bene�t at time i
beomes b̂i = κb̂Gi .

Figure 1 shows the expeted ontributions and bene�ts made/reeived by the poliyholder.

Relating to (34)-(35) we get ci = ĉini and bi = b̂ini, where ci and bi should be interpreted as the

expeted ash �ows for eah individual of a large ohort. We set r = 3%, µ = 4%, κ = 1.5, and
C = 0 or C = 1.5. We onsider a simple but illustrative example where the expeted return on

stoks is realized every year. Thereby for C stritly positive a bonus attribution is made every

year.

The expeted ontributions ci, i = 25, . . . , 64, illustrated in Figure 1 as the positive bars,

fall into two parts; the (expeted) guaranteed part cGi (dark gray bars) and the (expeted)

ontribution to the olletive bonus potential ci − cGi (light gray).

The expeted bene�ts bi, i = 65, . . . ,∞, reeived by the poliy holder, illustrated in Figure 1

as the negative bars, an be split into three parts; the (expeted) upon ontribution guaranteed

bene�ts b
G(no bonus)
i (dark gray bars), (expeted) bene�ts originating from bonus attributions

b
G(no bonus)
i − bGi , and the (expeted) terminal bonus (b

G(no bonus)
i − bGi )(κ− 1).

The upper plot in Figure 1 is without investments, i.e. C = 0, and the lower plot orresponds

to C = 1.5, i.e. slight leverage of the bonus potential. Although Figure 1 shows an example

where the expeted return on stoks is realized every year, it should be lear from Figure 1 that

partiipating in the risky part of the investment market is expeted to ontribute onsiderable

positively to the pension bene�ts reeived by the poliyholder. Furthermore, note that as the

retiree gets older the part of the guaranteed bene�ts originating from bonus attributions beomes

a bigger part of the total bene�t.

3.2 Colletive pension funds in the real world

Real world olletive pension funds are operated on a going-onern basis. The balane is

omposed of provisions for individual pension entitlements and olletively owned reserves (bonus

potential). The latter ats both as a ushion to absorb �nanial and insurane risks and as a

soure for �naning pension indexation (bonuses). Colletive reserves are to be used �in the

best interest of members� but typially there are no expliit objetives to guide their use. One

problem faed by the fund board is that there are often on�iting interests between generations.

In general, old members prefer indexation over investment freedom, while young members prefer

investment freedom with the potential for long-term gains rather than immediate indexation.

Thus in pratie it is not obvious how to at in the best interest of (all) members in a olletive

sheme.

In this paper we propose to resolve the ambiguous onept of �best interest of members�

by optimizing the stationary dynamis of the fund. Given the long time horizon from �rst

ontribution to last bene�t for eah individual member and given the inde�nite time horizon

of the fund itself, it an indeed be argued that �optimal� stationary dynamis should be the

ommon objetive. In the setions to follow we will haraterize the stationary dynamis of the

model fund and propose an optimization riterion to be evaluated in stationarity. The analysis

rests on a number of simplifying assumptions and we disuss the most important of these below.

We assume that the bonus potential is only a�eted by investment returns and bonus at-

tributions. In pratie, however, the bonus potential must also over other risks, in partiular

longevity risk. Life expetany in the industrialized world has been inreasing over the past

sixty years and it ontinues to inrease at a surprisingly fast pae, e.g. see Tuljapurkar et al.

(2000). Pension funds o�ering guaranteed lifelong annuities are therefore exposed to substan-

tial longevity risk. If life expetany ontinues to evolve at the urrent pae reserves might be

insu�ient and the shortfall must be overed by the bonus potential. Further, regulation might

require a reservation of apital to over longevity risk whih eteris paribus implies less room for

investment risk. Thus in pratie longevity risk is likely to in�uene the investment pro�le of

the fund. On the other hand, there are also pension funds o�ering only lump sum payments at

retirement or where bene�ts are linked to the life expetany experiene. These funds are lose
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Figure 1: The expeted ash �ow of an individual poliy holder: Positive parts, from age 25 to

64, are expeted pension ontributions, and negative parts, from age 65 to 110, are expeted

bene�ts. Dark gray bars: Original guaranteed parts. Gray bars: Inreased guaranteed bene�ts

due to bonuses. Light gray bars: Bonus potential ontributions and terminal bonus bene�ts,

respetively. Upper plot orresponds to C = 0, and lower plot orresponds to C = 1.5.

to ful�lling our assumption of no longevity risk.

Longevity risk is a systemati risk that a�ets an entire member base regardless of its size.

In addition to this risk, a real world pension fund also faes so-alled unsystemati mortality risk

aused by the random nature of death at the individual level. However, in ontrast to longevity

risk the unsystemati risk is diversi�able aross members and will ause only minor �utuations

in the bene�t out�ow for a large fund. We impliity make the assumption that the pension fund

under onsideration is so large that unsystemati mortality risk an safely be ignored.

Another key assumption is the ability of the fund to perfetly hedge its liabilities. In the

Blak-Sholes market there is a single, onstant interest rate, and all nominal payments an

therefore be repliated (hedged) by a ash deposit in the bank aount. The onstant rate

implies that the reserve amortizes at the same rate irrespetive of when the bene�ts fall due,

and onsequently we do not need to take the pro�le of the underlying bene�t ash �ow into

aount. Realism ould be added by introduing a stohasti interest rate model. This would

give rise to a term struture and liabilities should then be hedged by a portfolio of zero-oupon

bonds. The interest rate sensitivity of the reserve ompliates the analysis, but as long as the

liability an be hedged the situation is essentially the same as the one onsidered.

In pratie, however, the reserve is typially not alulated on a tradable market urve,

and the reserve therefore does not represent the value of a �nanial hedge. For example, the

disount urve under the forthoming Solveny II regulatory framework in Europe is an intriate

onstrution whih is only partly market based, and there is no guarantee that a �Solveny II
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reserve� is su�ient to hedge the liability. Simply put, our analysis is onerned with the �nanial

value of liabilities, not the reported value.

In line with the vast majority of the related literature, we assume that the fund an operate

without fritions in the apital markets. This implies that the fund an lever the bonus potential

and also derisk fast enough to remain fully funded in all situations. Leverage through the use

of highly liquid index futures are both available and used in real life. However, atual markets

do not evolve ontinuously and there is a risk of the fund inurring larger losses in reality

than in the model. To fully ontrol the downside risk, the fund an use options either as tail

protetion or to obtain one-sided stok market partiipation, but both of these strategies ome

at the prie of lower expeted returns. Many pension funds also invest in illiquid assets whih

redue investment �exibility. It seems fair to say that most pension funds do not adapt their risk

exposure as dynamially as assumed in the analysis, but it is more of a hoie than a neessity.

Finally, we make the assumption that the funding ratio is invariant to ontributions entering

and bene�ts leaving the fund. This is a strit version of the reasonable requirement that there

should be no systemati redistribution of wealth between generations. Of ourse, in pratie,

this requirement is interpreted somewhat more loosely. From a mathematial point of view the

�funding invariane� is important, beause it allows us to ignore the underlying demographis.

Otherwise, we would have to expliitly model the ontribution pro�le over an entire population

and its evolution over time. The assumption on ontributions, bene�ts and bonus attributions

all taken plae at the same time is however made only for notational onveniene and an easily

be relaxed.

3.3 Outline

The purpose of the rest of the paper is twofold. First, we haraterize the impat of C and κ
in terms of bonus time (time between bonus attributions), bonus size and funding ratio. The

haraterization is provided for funds started at κ and in stationarity (the long-run average).

Seond, we propose a riterion by whih κ and C an be determined. The riterion is

evaluated in stationarity to re�et the fat that the fund is olletive and should be designed for

the bene�t of the average member. The simple pension produt to be onsidered is the ase in

whih a ontribution of one is made at time t = 0 for a bene�t paid out in its entirety at t = T
(retirement). In this ase the bene�t at retirement beomes

OT =
F (T )

F (0)
erT

T∏

i=1

(
1 + rBi

)
. (41)

In priniple, di�erent ontribution and bene�t pro�les, e.g. as in Subsetion 3.1, ould also be

analyzed. The point to note is that the payo� depends solely on the funding ratio dynamis.

4 Bonus and funding ratio

The time between onseutive bonuses, the size of the bonus and the funding ratio given no

bonus has yet been attributed an all be analyzed by the random walk results of Setion 2.

Consider the following transformation

Yn = − log

(
Fn − 1

κ− 1

)
for n ∈ N0. (42)

This transformation turns the funding ratio proess (37) into the one-sided random walk

Yn = (Yn−1 +Xn)
+, (43)
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where the Xn's are i.i.d. normally distributed with mean −
(
Cµ− 1

2C
2σ2

Z

)
∆ and variane

C2σ2
Z∆. Note that Fn = κ orresponds to Yn = 0, while funding ratios lose to one orre-

spond to high values of Y .
Along with Y we also onsider the (unrestrited) random walk of Setion 2,

S0 = 0 and Sn = Sn−1 +Xn for n ∈ N, (44)

with the same Xn's as in (43). The distribution of Sn is given by

Sn ∼ N

(
−n

(
Cµ− 1

2
C2σ2

Z

)
∆, nC2σ2

Z∆

)
. (45)

Thus, in the notation of Setion 2 we have

pn = P (Sn ≤ 0) = Φ

(√
n∆

µ− 1
2Cσ2

Z

σZ

)
, (46)

where Φ denotes the umulative distribution funtion (CDF) of a standard normal distribution.

4.1 Stationarity

The �rst question of interest is whether the fund admits a stationary distribution or not. In the

stationary ase the funding ratio distribution onverges towards a non-degenerate distribution,

otherwise it onverges (in probability) towards one. The following result answers the question

in terms of the aggressiveness of the investment strategy (the result was also by Preisel et al.

(2010) albeit in a di�erent parametrization).

Proposition 4.1. The funding ratio proess (37) admits a stationary distribution if and only if

C < 2µ
σ2
Z

.

Proof. By Proposition 11.5.3 of Meyn and Tweedie (2009) we have that the Y -proess, and
hene the F -proess, admits a stationary distribution i� the mean of the inrements Xn is

stritly negative, i.e. i� C < 2µ
σ2
Z

.

When it exists, we will denote the stationary funding ratio distribution by π. We note that

the existene of a stationary distribution is independent of how often (∆) and at whih level

(κ) a bonus is allotted. A stationary distribution exists if and only if the median return on the

bonus potential is positive. If the bonus potential is invested more aggressively than that it will

eventually get lost (in the boundary ase, C = 2µ/σ2
Z , bonus will in fat be attributed in�nitely

often, but the average time between eah bonus is in�nite!).

4.2 Bonus times

We refer to the time between onseutive bonus attributions as bonus times, or more preisely

bonus waiting time. Formally, these are de�ned by

T1 = inf{n ≥ 1 : Fn = κ} = inf{n ≥ 1 : Yn = 0}, (47)

and, reursively, for k ≥ 2

Tk = inf{n ≥ 1 : FTk−1+n = κ} = inf{n ≥ 1 : YTk−1+n = 0}. (48)

Consider �rst the ase where F0 = κ. Then Y0 = 0 and the �rst bonus time oinides with

the entrane time of S to (−∞, 0], i.e. T1 = τ−, where τ− is given by (2) of Setion 2. Further,

sine the funding ratio is κ after a bonus attribution it follows by the Markov property that all

subsequent bonus times are independent and distributed as T1.
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Consider next the stationary ase and assume that F0 is distributed aording to the sta-

tionary funding ratio distribution. Imagine that the fund has been operating sine time minus

in�nity. The probability that at time 0 we are in a period (between two bonuses) of length k
is then given by kτk/

∑∞
n=1 nτn, i.e. the probability is proportional to the length of the period

times the frequeny by whih it ours. Further, given that we are in a period of length k the

probability that we are n plaes (n ≤ k) away from the end is 1/k, sine eah position is equally

likely. Summing over all possible k's we get that the probability that the next bonus ours at

time n ≥ 1 is given by

Pπ(T1 = n) =

∞∑

k=n

1

k

(
kτk∑∞

n=1 nτn

)
=

∑∞
k=n τk

E(τ−)
=

1−∑n−1
k=1 τk

E(τ−)
, (49)

where we use subsript π to denote that F0 is drawn from the stationary distribution. When

the �rst bonus (after time 0) has been attributed the funding ratio is κ. Hene, all subsequent
bonus times are distributed as τ−.

Using subsript κ to denote the ase F0 = κ we thus have

Proposition 4.2. For k ≥ 1 and n ≥ 1

Pκ(Tk = n) = τn, (50)

and, provided the stationary distribution exists,

Pπ(Tk = n) =

{(
1−∑n−1

k=1 τk

)
/E(τ−) for k = 1,

τn for k ≥ 2,
(51)

where τn is given by (12) of Theorem 2.3 and E(τ−) is given by (16) of Setion 2.2

Note that in stationarity the probability of reeiving a bonus in any given year is

Pπ(r
B
1 > 0) = Pπ(Y1 = 0) = Pπ(T1 = 1) =

1

E(τ−)
. (52)

This relationship is also known as Ka's theorem.

In the stationary ase the drift of S is negative and it is not hard to show that the riterion

of Theorem 2.6 is satis�ed for all n. Hene, the time between bonuses has fatorial moments of

all orders and these an be alulated by (20) of Theorem 2.6.

4

4.3 Number of bonuses

The number of bonuses in a given period an be alulated from the bonus time distribution.

Let Rk = T1 + . . . + Tk denote the time of the k'th bonus, also known as the renewal epohs.

For F0 = κ and F0 ∼ π the distribution of Rk an be alulated by the reursion

P∗(R1 = n) = P∗(T1 = n), (53)

P∗(Rk = n) =

n−1∑

j=k−1

P∗(Rk−1 = j)τn−j . (54)

where P∗(T1 = n) is given by Proposition 4.2 (and ∗ is either κ or π).
Let Nn denote the number of bonuses from time 1 to time n. We have

P∗(Nn ≤ k) = P∗(Rk+1 > n) = 1−
n∑

j=k+1

P∗(Rk+1 = j), (55)

where ∗ is either κ or π.
4

In fat, it an be shown that Y is so-alled geometrially ergodi whih implies exponential moments of the

return time to 0, i.e. the time between bonuses.
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4.4 Bonus perentage

The bonus perentage distribution an be derived from the (desending) ladder height distribu-

tion of the random walk. For F0 = κ the events (T1 = n) and (τ− = n) are idential and on this

event the bonus perentage given by (33) beomes

rBn =
κ− 1

κ

(
e−Sn − 1

)
. (56)

The mean bonus perentage given the time of bonus an then be alulated by use of Theorem 2.8.

Proposition 4.3. For n ≥ 1

Eκ

(
rBn
∣∣T1 = n

)
=

κ− 1

κ

[
E
(
e−Sn

∣∣τ− = n
)
− 1
]
, (57)

where

E
(
e−Sn

∣∣τ− = n
)
= − 1

τn

∑

σ∈Dn

sgn(σ)

dσ

n∏

k=1

(
E
(
e−Sk ;Sk ≤ 0

))σk
(58)

with

E
(
e−Sk ;Sk ≤ 0

)
= ekCµ∆Φ

(√
k∆

µ+ 1
2Cσ2

Z

σZ

)
. (59)

Further, for n ≥ 1 and provided the stationary distribution exists

Eπ

(
rBn
∣∣T1 = n

)
=

1

Pπ(T1 = n)

∞∑

k=0

Eκ

(
rBn+k

∣∣T1 = n+ k
) τk+n

E(τ−)
. (60)

Proof. Formula (57) follows diretly from (56). Theorem 2.8 identi�es the onditional distri-

bution of Sn given τ− = n as a linear ombination of onditional normal tail measures. Sine

the normal distribution has exponential moments of all orders we onlude (58) by dominated

onvergene. Expression (59) follows from (45) by standard alulations.

For the stationary ase we onsider a fund whih has been run sine time minus in�nity. Let

λ denote time sine a bonus was last attributed,

λ = inf{n ≥ 0 : F−n = κ} = inf{n ≥ 0 : Y−n = 0}. (61)

By the argument of Setion 4.2 leading to (49) and the Markov property we have

Pπ (T1 = n, λ = k) =
1

n+ k

(n+ k)τk+n

E(τ−)
=

τk+n

E(τ−)
, (62)

Eπ

(
rBn
∣∣T1 = n, λ = k

)
= Eκ

(
rBn+k

∣∣T1 = n+ k
)
. (63)

By summing over all possible values of λ we obtain

Eπ

(
rBn
∣∣T1 = n

)
=

1

Pπ(T1 = n)
Eπ

(
rBn ; T1 = n

)

=
1

Pπ(T1 = n)

∞∑

k=0

Eπ

(
rBn ; T1 = n, λ = k

)

=
1

Pπ(T1 = n)

∞∑

k=0

Eπ

(
rBn
∣∣T1 = n, λ = k

)
Pπ (T1 = n, λ = k) . (64)

Finally, inserting (62) and (63) in (64) yields (60).

Higher order polynomial moments of rB an be expressed in terms of exponential moments

of Sn by expanding (56). It is straightforward to extend Proposition 4.3 to over this ase also.
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4.5 Funding ratio

We onsider at last the funding ratio of the fund given that no bonus has yet been attributed.

For F0 = κ the events (T1 > n) and (τ− > n) are idential and on this event

Fn = (κ− 1)e−Sn + 1. (65)

Polynomial funding ratio moments an be derived by use of Theorem 2.9. For the mean funding

ratio we have the following result.

Proposition 4.4. For n ≥ 1

Eκ

(
Fn

∣∣T1 > n
)
= (κ− 1)E

(
e−Sn

∣∣τ− > n
)
+ 1, (66)

where

E(e−Sn |τ− > n) =
1

P (τ− > n)

∑

σ∈Dn

1

dσ

n∏

k=1

(
E(e−Sk ;Sk > 0)

)σk
(67)

with

E
(
e−Sk ;Sk > 0

)
= ekCµ∆Φ

(
−
√
k∆

µ+ 1
2Cσ2

Z

σZ

)
. (68)

Further, for n ≥ 1 and provided the stationary distribution exists

Eπ

(
Fn

∣∣T1 > n
)
=

1

Pπ(T1 > n)

∞∑

k=0

Eκ

(
Fn+k

∣∣T1 > n+ k
)
Pπ(T1 = n+ k + 1), (69)

Proof. We will only prove (69). With λ as in (61) and by use of (62) we have

Pπ(T1 > n, λ = k) =

∞∑

i=n+1

Pπ(T1 = i, λ = k) =

∞∑

i=n+1

τi+k

E(τ−)
= Pπ(T1 = n+ k + 1), (70)

and, by the Markov property,

Eπ

(
Fn

∣∣T1 > n, λ = k
)
= Eκ

(
Fn+k

∣∣T1 > n+ k
)
. (71)

Then

Eπ

(
Fn

∣∣T1 > n
)
=

1

Pπ(T1 > n)
Eπ (Fn; T1 > n)

=
1

Pπ(T1 > n)

∞∑

k=0

Eπ (Fn; T1 > n, λ = k)

=
1

Pπ(T1 > n)

∞∑

k=0

Eπ

(
Fn

∣∣T1 > n, λ = k
)
Pπ(T1 > n, λ = k). (72)

By inserting (70) and (71) into (72) we obtain (69).

5 Appliations

In the following we alulate key statistis for the pension fund model of Setion 3, and we

illustrate how these statistis are in�uened by the bonus threshold (κ) and the investment

strategy (C). Based on the results of Setion 4 we alulate the bonus time distribution, the

bonus time moments, the number of bonuses, the expeted bonus and the expeted funding ratio

given no bonus. Statistis are alulated for a fund at the bonus threshold and for a fund in

stationarity.
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In Setion 5.2 we onsider a pension saver paying one monetary unit to the pension fund and

reeiving 40 years later his terminal pension bene�t as a lump sum. Closed form expressions

for the pension bene�t mean and variane are derived for a fund at the bonus threshold at the

time of the ontribution. Further, we present in Proposition 5.1 an exat simulation algorithm

whih allows the alulation of the pension bene�t mean and variane in stationarity. This is

used to �nd the investment strategy optimizing the expeted payout in stationarity for given

bonus threshold, i.e. the expeted payout for the average saver.

Exat samples from the stationary distribution an also be obtained by the algorithm of Ensor

and Glynn (2000). Their algorithm uses exponential tilting and requires exponential moments of

the innovation distribution to generate independent, identially distributed samples. In ontrast,

our algorithm generates partly dependent, identially distributed samples with no distributional

assumptions.

We assume throughout that a bonus is (possibly) attributed one a year (∆ = 1), and we

use the following apital market parameters r = 3%, µ = 4%, and σZ = 15%.

5.1 Charaterization

As a base ase example we hoose C = 1.5 and κ = 1.5. Thus when the fund is at the bonus

threshold 2/3 of ontributions are guaranteed the risk-free rate r. For ontributions ommitted to
the fund at lower funding ratios, i.e. in periods between bonuses, a larger fration is guaranteed.

Note that sine C is larger than one the bonus potential is leveraged, i.e. the amount invested

in stoks is larger than the bonus potential. At the bonus threshold the fration of total assets

invested in stoks is given by (1−(1/κ))C. For a base ase fund at the bonus threshold a fration
of 1/2 of total assets are invested in stoks.

Stationarity

Only investment strategies whih give rise to a stationary funding ratio proess are onsidered

viable options for a olletive pension fund. Otherwise the funding ratio will (essentially) on-

verge to one implying that all assets are invested in the risk-free asset only or, equivalently, that

all ontributions are fully guaranteed. Sine one of the purposes of entering a olletive fund is

to get aess to the apital market in a ost-e�etive way, the latter situation de�es the purpose

of an investment olletive.

5

Proposition 4.1 provides an upper bound on the investment strategy, C, for a stationary

distribution to exist. The bound depends on the apital market parameters only, and neither on

the threshold (κ) nor the frequeny of possible bonus attributions (∆). For the apital market

parameters stated above the fund admits a stationary distribution if and only if C is at most

3.56. Hene, with C = 1.5 the base ase fund is stationary.

For higher values of σZ and/or smaller values of µ the upper bound is appreiably smaller.

For the higher, but not unrealisti, volatility of σZ = 20% and with the same risk-premium of

µ = 4% the upper bound on C is 2. For a base ase fund at the threshold the bonus potential

onstitutes one third of total assets. In this ase, a bound of 2 implies that the fund an invest at
most two thirds of its assets in stoks. Thus, the stationarity requirement an impose material

onstraints on the investment strategy. Figure 2 illustrates the upper bound on C for di�erent

market parameter sets.

Bonus times

The �rst bonus time, T1, measures the time of the �rst bonus after time zero. For a fund initially

at the bonus threshold the distribution of T1 an be identi�ed as the distribution of τ−, i.e. the
entrane time to (−∞, 0] of the assoiated random walk. For a fund in stationarity, however, it

5

The other main purpose of a olletive fund is the ability to provide lifelong bene�t streams through �di-

versi�ation� of the individual member's time of death. However, in the urrent paper we do not onsider this

aspet.
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Figure 2: Upper bound on the fration of the bonus potential invested in risky assets (C) for a
stationary funding ratio proess to exist. The bound is shown as a funtion of expeted exess

return of the risky asset (µ) for seleted values of volatility (σZ). From highest to lowest the

bounds orrespond to σZ = 10%, 12.5%, 15%, 17.5% and 20%. The dot indiates the base ase

values of (µ,C) = (4%, 1.5).

typially takes longer before the �rst bonus is attributed sine the funding ratio at time zero is

often below the bonus threshold. One the �rst bonus is attributed, the waiting time between

all subsequent bonuses is distributed as τ− regardless of the funding ratio at time zero.

It turns out, perhaps somewhat surprising, that for a fund starting out either at the bonus

threshold or in stationary the distribution of T1 depends only on the investment strategy, and not
on the bonus threshold.

6

The top left plot of Figure 3 shows the distribution of T1 in these two

ases as given by Proposition 4.2. For a base ase fund at the bonus threshold the probability of

a bonus at the �rst year is over �fty perent, while the same probability in stationarity is only

about twenty perent. The large di�erene between these values implies that in stationarity the

fund is typially �between bonuses�.

The probability of a bonus at the �rst year as a funtion of the investment strategy is shown

in the bottom left plot of Figure 3. For a fund at the bonus threshold, the probability is over

�fty perent for all onsidered investment strategies albeit dereasing in C. The stationary

probability on the other hand tends to zero as C approahes the upper bound for stationarity

of 3.56. Reall that the stationarity probability also has the interpretation as the long-term

average, i.e. the frequeny with whih bonuses will be attributed over long horizons (regardless

of the initial funding status).

Moments of the time between bonuses an be alulated by Theorem 2.6. The mean and

standard deviation for various values of C are shown in Table 2; as mentioned above the distribu-

tion and hene the moments depend only on the investment strategy. In the base ase the mean

is �ve years, but with a standard deviation of almost fourteen years. Thus there is onsiderable

variability in the length of the periods between bonuses. For larger values of C the mean and,

in partiular, the standard deviation inrease. A fund with C = 3 is still stationary but there

will be deades, and even enturies, with no bonus. However, by Proposition 4.1 we have that

6

However, for a fund starting out at a given funding ratio (below the bonus threshold) the distribution of T1
does of ourse depend on the bonus threshold also.
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Figure 3: Solid urves orrespond to F0 = κ and dashed urves to the stationary ase, F0 ∼ π.
For the upper plots C = 1.5. Upper left: Distribution of the �rst bonus. Lower left: Probability

of a bonus at the �rst year as a funtion of the investment strategy C. Upper right: Distribution
of the number of bonuses in 40 years. Lower right: Probability of no bonuses in 40 years as a

funtion of the investment strategy C.

the funding ratio admits a stationary distribution i� the median return on the bonus potential

is positive (for a base ase fund that is C < 3.56). In other words, the stationarity requirement

imposes a median time between bonuses

7

of 1. We onlude that the distribution of the waiting

times between bonuses is heavily right skewed.

C 1 1.5 2 2.5 3

E(τ−) 4.12 5.02 6.49 9.35 17.39

SD(τ−) 9.87 13.73 20.93 37.55 98.60

Table 2: The mean and standard deviation of the time between bonuses for di�erent investment

strategies C. In all ases the median is 1.

Number of bonuses

The number of bonuses from time 1 to time n is denoted Nn. The distribution of Nn an be

alulated from the distributions of T1 and τ− as desribed in Setion 4.3. For a fund starting

out either at the bonus threshold or in stationary the distribution of Nn depends only on the

investment strategy, and not on the bonus threshold.

7

De�ned as min{n ∈ N :
∑

n

i=1
τi ≥ 0.5}
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The top right plot of Figure 3 shows the distribution of N40 for a base ase fund. For a

base ase fund starting out at the bonus threshold the distribution of N40 is unimodal and the

number of bonuses will most likely be around 10. In the stationarity ase, however, there is an

additional peak at zero. There is thus a rather large probability of about �fteen perent of no

bonus at all in forty years, orresponding to the events where the fund is initially at a (very)

low funding level. If a bonus is attributed at least one the fund evolves like a fund started at

the bonus threshold for the remaining period. The part of the stationary distribution of N40 at

one and above therefore looks like a saled and shifted version of the �threshold� distribution.

The probability of no bonuses in forty years as a funtion of the investment strategy is

depited in the bottom right plot of Figure 3. For inreasing C, the probability is modestly

inreasing for a fund at the bonus threshold, while the stationary probability inreases to one.

Bonus perentage

In ontrast to the time of bonus, the bonus perentage (onditioned on a bonus being given)

depends on both the investment strategy and the bonus threshold. It also depends on the time

sine the last bonus.

The bonus perentage is determined by the funding ratio distribution of the year prior; the

higher the funding ratio the higher the onditional expeted bonus.

8

If a fund starting at the

bonus threshold does not give a bonus in the �rst year the funding ratio will be stritly below

the bonus threshold. This implies that a bonus in the seond year (if given) is on average smaller

than a bonus in the �rst year (if given). This argument is hard to ontinue formally, but it seems

at least intuitively reasonable that the expeted bonus will be dereasing in the time sine the

last bonus.

The bonus perentage onditioned on the value of T1 an be alulated by Proposition 4.3.

It is shown in the top left plot of Figure 4 for the base ase fund. We see that the onditional

expeted bonus quikly drops by one to two perentage points depending on how the fund is

started, and then levels o� to just below 5.5%.

The middle left plot of Figure 4 shows the expeted value of the �rst bonus,

E(rBT1
) =

∞∑

n=1

E(rBn |T1 = n)P (T1 = n), (73)

for the base ase fund. The expeted bonus (when given) is inreasing in C, both in stationarity

and for a fund starting at the bonus threshold. In stationarity, however, the frequeny with whih

bonuses are attributed dereases with C, f. lower left plot of Figure 3. The average bonus in

stationarity is therefore a trade-o� between many, small bonuses and few, large bonuses. The

average bonus in stationarity,

Eπ(r
B) = Eπ(r

B
1 |T1 = 1)Pπ(T1 = 1), (74)

is shown in the lower left plot of Figure 4. It is seen that the long-term average bonus is

maximized for C just below 2.
It follows from Proposition 4.3 that the average bonus for funds with the same C but di�erent

bonus thresholds are linearly related. Spei�ally, the average bonus in stationarity is related by

E(C,κ2)
π (rB) =

κ2 − 1

κ2

κ1

κ1 − 1
E(C,κ1)

π (rB). (75)

This implies that plots for di�erent thresholds are saled versions of eah other. In partiular,

the average bonus in stationarity is maximized for the same C. It also follows that the average
bonus for a fund with κ = 3 is twie as high as the average bonus for a fund with κ = 1.5 (base
ase value). Of ourse, the guaranteed part to whih the bonus is applied is orrespondingly

smaller.

8

This in fat is not obvious, sine we ondition on a bonus being given. It an nevertheless be shown as a

onsequene of stohasti ordering and log-onavity of the normal distribution.
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Figure 4: Solid urves orrespond to F0 = κ and dashed urves to the stationary ase, F0 ∼
π. Bonus threshold κ = 1.5 in all plots. Upper left: Conditional expeted bonus perentage

(C = 1.5). Middle left: Expeted �rst bonus. Lower left: Expeted bonus in stationarity. Upper

right: Conditional expeted funding ratio given no bonus (C = 1.5). Middle right: Conditional

expeted funding ratio given no bonus in 40 years. Lower right: Expeted funding ratio in

stationarity.

Funding ratio

The pension payo� depends on the funding ratio when ontributions are ommitted, the bonuses

up to the time of payout, and the funding ratio at payout. Thus to evaluate the payo� we need

to onsider both the funding ratio at the time money enters the fund, and the funding ratio at
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the time money leaves the fund.

The expeted funding ratio as a funtion of the time sine the last bonus an be alulated

by Proposition 4.4. This is shown for the base ase fund in the upper right plot of Figure 4.

The expeted funding ratio is dereasing in the time sine the last bonus. Intuitively, this seems

reasonable sine absene of a bonus indiates that the fund is experiening poor investment

results. It is perhaps surprising, however, that the (expeted) funding ratio seems to level

o�, at around 120%. Thus beyond a ertain point the funding ratio does not deteriorate any

further. Limiting distributions of Markov hains onditioned on non-absorption (or in our ase

no bonus) are known as Yaglom limits. We onjeture that the fund possesses a Yaglom limit

both in stationarity and when started at the threshold, i.e. that the funding ratio distribution

onditioned on no bonus onverges to a non-degenerate distribution. However, establishing

existene, let alone identifying, Yaglom limits is non-trivial and a formal study is outside the

sope of this paper. The interested reader is referred to the speialist literature on quasi-

stationarity, e.g. Tweedie (1974); Jaka and Roberts (1995); Lasserre and Peare (2001).

9

We know that high equity exposures lead to high, but infrequent, bonuses. It also leads to

low expeted funding ratios. The expeted funding ratio in stationarity,

Eπ(F ) = κPπ(T1 = 1) + E(F1|T1 = 1)Pπ(T1 > 1), (76)

is shown in the lower right plot of Figure 4, while the expeted funding ratio after 40 years with

no bonus is shown in the middle right plot. For low values of C both the unonditional and

onditional expeted funding ratios are lose to the maximum of 1.5, while as C approahes the

upper limit for stationarity the (expeted) funding ratio tends to one.

We �nally note that it follows from Proposition 4.4 that the expeted funding ratio for funds

with the same C but di�erent thresholds are related by an a�ne transformation. Spei�ally,

the expeted funding ratio in stationarity is related by

E(C,κ2)
π (F ) =

κ2 − 1

κ1 − 1

(
E(C,κ1)

π (F )− 1
)
+ 1. (77)

Higher bonus thresholds thereby lead to higher expeted funding ratios and hene lower guar-

antees.

5.2 Pension bene�ts

The rationale behind guaranteeing a �xed return on a part of the ontributions is that it ensures a

ertain minimum bene�t. However, guarantees redue the risk apaity for risky assets impairing

expeted returns. Expeted returns an be inreased by leverage of the bonus potential, but

this in turn inreases the variability. The (minimum) fration guaranteed and the expeted

return/variability are ontrolled by κ and C, respetively.
In this setion we alulate the mean and variane of the payout onsidered in Setion 3

(repeated here for ease of referene),

OT =
FT

F0
erT

T∏

i=1

(
1 + rBi

)
. (78)

This is used to alulate the optimal C for a mean-variane riterion for given κ. We take the

perspetive of the �average� member and we therefore perform the optimization for a fund in

9

The partial result that the funding ratio given no bonus does not onverge to one an be obtained without too

muh e�ort. Loosely speaking, it follows sine the bonus waiting time has exponential moments, f. footnote 4,

and sine a bonus an only be attributed when the funding ratio is �lose� to κ the year prior. Consequently,

the probability that the funding ratio is above a ertain level an be bounded away from zero at least along

a sub-sequene. Essentially the same onditions (exponential moments of time to absorption and inreasing

absorption times from states far away) are used in Ferrari et al. (1995) to show the existene of a quasi-stationary

distribution for a ontinuous-time Markov hain on a disrete state spae. Also note Martinez et al. (1998) whih

studies quasi-stationarity of a Brownian motion onditioned to stay positive. In our setup this an be seen as the

limiting ase where bonuses are attributed ontinuously (∆ ≈ 0).
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stationarity. The analysis proeeds in two steps. First, we alulate the mean and variane

of OT for a fund starting at the threshold. Seond, based on these results we apply an exat

simulation algorithm to �nd the stationary mean and variane. The algorithm is onsiderably

simpler than existing algorithms and might be of independent interest.

Fund at bonus threshold

The �rst and seond order moment of OT (and thereby the variane) an be alulated by a

so-alled last-exit deomposition, see e.g. Meyn and Tweedie (2009) p. 178. Let U denote the

last time a bonus was given before and inluding time T . Note that U is not a stopping time,

and that the deomposition is not a onsequene of the Markov property. We have

Eκ(OT ) =Eκ(OT ; T1 > T ) +

T∑

j=1

Eκ(OT ;U = j)

=
erT

κ
eκ(T ) +

erT

κ

T∑

j=1



∑

σ∈Dj

c̃σ

j∏

i=1

(
τiEκ

(
1 + rBi

∣∣T1 = i
))σi


 eκ(T − j), (79)

where for σ ∈ Dj and n = 0, . . . , T ,

c̃σ =
(
∑j

i=1 σi)!∏j
i=1 σi!

, eκ(n) = Pκ(T1 > n)Eκ(Fn

∣∣T1 > n). (80)

The expression for Eκ(OT ;U = j) follows by onsidering the di�erent ways bonuses an be

attributed suh that the last bonus falls at time j. The di�erent patterns of time between

bonuses are given by the permutations in Dj . For eah pattern the probability of it ourring

and the assoiated expeted bonus an be alulated by the Markov property, and this has to

be multiplied by the number of ways the �bonus waiting periods� an be arranged, given by

c̃σ. Finally, we multiply by the expeted funding ratio given that no bonuses are given for the

remaining period, given by eκ(T − j). The quantities appearing in expressions (79) and (80) an

be alulated by Propositions 4.2�4.4.

For the seond order moment we similarly �nd

Eκ(O
2
T ) =Eκ(O

2
T ; T1 > T ) +

T∑

j=1

Eκ(O
2
T ;U = j)

=
e2rT

κ2
sκ(T ) +

e2rT

κ2

T∑

j=1



∑

σ∈Dj

c̃σ

j∏

i=1

(
τiEκ

((
1 + rBi

)2 ∣∣T1 = i
))σi


 sκ(T − j), (81)

where c̃σ is given by (80) and for n = 0, . . . , T ,

sκ(n) = Pκ(T1 > n)Eκ(F
2
n

∣∣T1 > n). (82)

In order to alulate sκ(k) note that on the event (T1 > n)

F 2
n =

(
(κ− 1)e−Sn + 1

)2
= (κ− 1)2e−2Sn + 2(κ− 1)e−Sn + 1. (83)

Hene, we need to alulate onditional expetations of e−Sn
and e−2Sn

. The �rst of these is

given by (67) of Proposition 4.4. The latter an be alulated by the same formula upon replaing

the term E(e−Sn ;Sn > 0) with E(e−2Sn ;Sn > 0). To evaluate (81) we also need to alulate

the seond order moment of the bonus perentage. Similarly to F 2
n the term (1 + rBi )2 an be

expanded and expressed in terms of e−Si
and e−2Si

. The appropriate onditional expetations

of the latter quantities an be alulated by the formula (58) of Proposition 4.3. We omit the

details.

23



Fund in stationarity

We are interested in alulating the stationary mean and variane of OT . From Propositions 4.2�

4.4 we know the time and size of the �rst bonus, moments of the initial funding ratio and

moments of the terminal funding ratio onditioned on no bonuses. Unfortunately, we need

the joint distribution of these quantities and this is not available in an analytially tratable

form. Instead we will apply a simulation algorithm based on samples from the joint stationary

distribution of (F0, T1, rBT1
, FT1∧T ). The idea is to split the period in two, the time up to the

�rst bonus (if it ours before time T ) and the time after the �rst bonus. Moments of OT an

be obtained by ombining samples for the period up to the �rst bonus with analyti results for

the period after the �rst bonus.

Samples from the joint distribution of (F0, T1, rBT1
, FT1∧T ) an be obtained in several ways.

Perhaps the most obvious is to simulate F0 from the stationarity funding ratio distribution.

Given F0 we an then simulate the evolution of the fund until the �rst bonus and reord the

time and size of the bonus. Ensor and Glynn (2000) give an algorithm whih an be used to

obtain exat samples of F0, and Preisel et al. (2010) give an alternative algorithm by whih F0 an

be sampled to any desired level of auray. Both algorithms rely on the fat that the invariant

distribution of a one-sided random walk (the Y -hain of Setion 4) equals the distribution of the

maximum of the assoiated unrestrited random walk (the S-hain of Setion 4).

We employ a di�erent idea based on the argument presented in Setion 4.2. In stationarity

the probability that at time 0 we are in a period between two bonuses of length k is proportional

to kτk. Further, given we are in a period of length k at time 0 it is equally likely that we are in

any of the k positions. This observation gives rise to a very simple algorithm for simulating in

stationarity: For a fund started at the threshold simulate the path up to the �rst bonus, say, at

time k. This happens with probability τk. Now, use this path to generate k samples by shifting

it n plaes to the left for n = 0, . . . , k − 1. Repeat the algorithm to obtain more samples.

The algorithm generates partly dependent samples from the stationary distribution. However,

when used to estimate expetations with respet to the stationary distribution the dependene

does not pose a problem. For evaluating moments of OT in stationarity we propose the following

method. The method ombines the (exat) samples with the analyti results obtained previously

to obtain a onsistent estimate of Eπ(OT ). Estimates of seond, and higher, order moments of

OT are obtained by suitable modi�ations of the GT -funtional.

Proposition 5.1. Let N be given. Starting at the bonus threshold simulate N paths until the

�rst bonus. Denote the funding ratio paths by (F
(i)
0 , . . . , F

(i)

T (i)
1 −1

) and the �rst bonus by r(i) for

i = 1, . . . , N . Let M =
∑N

i=1 T
(i)
1 . A onsistent estimate of Eπ(OT ) an be obtained by

Êπ(OT ) =
1

M

N∑

i=1

T (i)
1 −1∑

k=0

GT

(
F

(i)
k , T (i)

1 − k, r(i), F
(i)

T (i)
1 ∧(T+k)

)
, (84)

where

GT (F0, T1, rB , FT1∧T ) =
FT1∧T

F0
×
{
erT1(1 + rB)Eκ(OT−T1) for T1 ≤ T,

erT for T1 > T,
(85)

and O0 = 0 by onvention.

Note that the two ases in GT orrespond to whether or not the �rst bonus (in the shifted

path) ours before or after time T . Also note that a bonus ourring before or at time T for

the k-shifted path is equivalent to T (i)
1 ≥ T + k, and in this ase the last argument of GT equals

κ.
Although Proposition 5.1 is presented as a method for estimating a spei� quantity the

same method an be used to estimate any stationary expetation. The estimator an also be

made unbiased by replaing M by its expetation, NEκ(T1). As a simple example, stationary
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probabilities for F0 an be estimated unbiasedly by

P̂π(F0 ∈ A) =
1

NEκ(T1)

N∑

i=1

T (i)
1 −1∑

k=0

1A

(
F

(i)
k

)
(86)

for any event A.10

Mean-variane analysis

We are now in a position to do a mean-variane analysis of the payout OT with respet to

the strategy parameters κ and C. We assume a horizon of T = 40 years. This orresponds

approximately to the average time between when ontributions are made and bene�ts are paid

out in a pension fund with life-long memberships.

We �rst onsider a fund starting at the bonus threshold. Table 3 states the mean, the

minimum (guarantee) and the standard deviation of the payout for di�erent sets of (κ,C). In

all ases the mean equals 6. For the smallest value of κ the payout is guaranteed to be at least

2.656. To reah an expeted payout of 6 the bonus potential has to be leveraged substantially,

and this in turn leads to a large standard deviation. As κ inreases the guarantee dereases and

an expeted payout of 6 an be ahieved by investing the bonus potential less aggressively. This

redues the standard deviation at the prie of a larger downside risk (lower guarantee). In the

limit as κ tends to in�nity there is no guarantee and an expeted payout of 6 an be ahieved

with a standard deviation of 2.17 by investing 37 perent of total assets in stoks.

11

κ 1.25 1.5 2 3 5 10

C 2.705 1.259 0.782 0.570 0.468 0.413

mean 6 6 6 6 6 6

guarantee 2.656 2.213 1.660 1.107 0.664 0.332

std. dev. 3.662 2.603 2.356 2.256 2.214 2.191

Table 3: Mean, guarantee and standard deviation of O40 for a pension fund starting at the bonus

threshold. All sets of strategies (κ,C) imply a mean payout of 6.

Consider next a pension fund whih has �xed the bonus threshold at κ. This implies that

at least 1/κ of ontributions is guaranteed the risk free rate. The value of the threshold might

be stipulated by regulation to ensure a ertain minimum pension, or it might be deided by the

board of the pension fund based on soial eonomi onsiderations. In either ase, the fund needs

to determine an investment strategy C. One (ommon) way to balane the desire for a high

payout against unwanted variability is by use of a mean-variane optimization riterion. Being

a olletive pension fund we want to optimize the fund for the bene�t of the average member,

i.e. in stationarity. Hene, we onsider the following stationary mean-variane problem for �xed

κ
sup
C

{Eπ(OT )− γVarπ(OT )} . (87)

In Figure 5 the optimization problem with γ = 0.07468 and T = 40 is illustrated for κ = 1.5 and
κ = 3. The value of γ is hosen suh that 60 perent in stoks is optimal for a mean-variane

investor with no guarantee and a onstant proportion of total assets in stoks. We see from Fig-

ure 5 that neither the mean nor the standard deviation is monotone in C. The expeted payout

is dereasing for C su�iently large beause very aggressive strategies lead to low funding ratios

in stationarity. The fund with low guarantees (κ = 3) has an optimal C of about 80 perent,

10

Remark: Theorem 10.4.9 of Meyn and Tweedie (2009) together with Ka's theorem yields the representation

result Pπ(F0 ∈ A) = Eκ(
∑T1−1

k=0
1A(Fk))/Eκ(T1). This result an also be obtained from (86) by taking expeta-

tion on both sides. Conversely, it follows from the representation that the right-hand side of (86) is an unbiased

estimator of Pπ(F0 ∈ A) as laimed.

11

For the optimal mean-variane investment strategy see Korn (1997) and Zhou and Li (2000).
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while the fund with high guarantees (κ = 1.5) has an optimal C of about 150 perent. The

equity exposure, at the threshold, as a fration of total assets is about 50 perent for both ases.

The mean-variane riterion is normally applied in situations where more risk (higher C)
leads to higher expeted return and higher variability. It might be argued that the mean-

variane riterion is onsidered out of neessity to avoid degenerate solutions in these situations.

In stationarity, however, the expeted payout as a funtion of C is unimodal. We might therefore

alternatively de�ne the optimal investment strategy C∗
as the one maximizing the expeted

payout in stationarity. The optimal investment strategy C∗
thus de�ned is illustrated in Table 4

and Figure 5 upper left for di�erent values of κ. We see that C∗
is onsiderably higher than the

one obtained from the mean-variane riterion (for given κ). However, the assoiated standard

deviation is also onsiderably higher implying than the payout will typially deviate substantially

from its expetation.

κ 1 1.25 1.5 2 3 5 10

C∗
N/A 2.143 2.313 2.473 2.700 2.850 2.951

maximal mean 3.320 4.923 6.886 11.73 23.66 48.50 93.61

std. dev. 0 2.213 6.649 26.13 151.5 826.9 3540

Table 4: The optimal investment strategy, C∗
, maximizing the expetation of O40 in stationarity

for di�erent values of κ. The orresponding mean and standard deviation of O40 are also shown.

5.3 Conluding remarks

In this setion we have studied a stylized olletive pension fund and presented an essentially

omplete analysis of its stationary properties. We have argued that optimizing the fund's station-

ary dynamis is a way to ful�ll the otherwise vague objetive of �in the best interest of members�.

Of ourse, some (the board) must still deide on the olletive risk appetite. The analysis is

intriate and the model under study is kept simple of mathematial neessity. However, we

believe that the lessons learned have far-reahing real world onsequenes.

The simplest and most important lesson is that there is a limit to how muh risk the fund

an take, and this limit an be surprisingly low (Proposition 4.1). When this limit is exeeded

the fund will over time lose its bonus potential. Although the spei� limit depends on the

model, this is a general result that applies to all investors with a nonrenewable risk budget. It

shows that are must be taken when introduing volatility on the balane, and it also provides

a rationale for funds to buy tail protetion to urb losses.

The seond lesson of general appliability is that there is a genuine trade-o� between short-

term gains and long-term funding. In the long run too little investment risk leads to frequent,

small bonuses, while too muh investment risk leads to infrequent, large bonuses. Taken to the

extreme too little and too muh risk both lead to vanishing long-term bonuses and a balane

must therefore be struk, as illustrated in the lower two plots of Figure 4. This trade-o� exists

for all long-term investors trying to add value to a �xed liability from a limited amount of �free

money�. The key insight is that high expeted returns ome with the risk of big losses whih in

turn impair future risk taking.

The third lesson is that bonus �deserts� annot be prevented. Even if the fund is risk averse

there will be substantial variation in the time between bonuses, and this variability inreases

with the investment risk, see Table 2 or Figure 3 lower right plot. The sheer magnitude of the

variability is perhaps the most surprising result of the paper. Bearing in mind that the analysis

is in some sense an idealized �best ase� we would expet that when the underlying assumptions

are violated the time between bonuses will be even wider.

The �nal lesson to be �learned� is the analysis methodology in itself. Stationarity is a math-

ematial abstration whih we use to represent the long-term going-onern of a pension fund.
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Figure 5: Stationary mean and standard deviation of O40 as a funtion of the investment strategy

C. Solid urves orrespond to κ = 1.5 and dotted urves to κ = 3. Upper left: Expeted pension

payout. Upper right and lower left: Standard deviation of the pension payout (note the di�erent

sales). Lower right: Illustration of the mean-variane optimization problem (87).

Although stationarity in the strit probabilisti sense will never be ahieved in pratie, we be-

lieve that olletive pension funds should be designed with the aim of perpetual operation, i.e.

with stationary dynamis. The largest Danish pension fund, ATP, has suessfully applied these

ideas in pratie for more than a deade when designing poliies for risk budgeting, hedging,

investment and indexation, as well as the pension produt itself.

The work an be extended in a number of diretions to make the model more realisti.

A stohasti interest rate model would introdue interest rate sensitivity to the balane and

in�uene the dynamis of the funding ratio proess. In pratie, interest rate �utuations has

probably been the single most important fator for the funding ratio of many pension funds

in reent years. It would also be of onsiderable interest to introdue a demographi model

and study the impat of the gradual aging of the population that follows from inreased life

expetany.

In pratie pension funds, and investors in general, do not operate in perfet markets. Rather,

they fae a wide range of fritions in the form of e.g. regulatory requirements, leverage onstraints,

liquidity risk, di�erent rates for loans and deposits, urreny risk, operational risk et. Eah of

these e�ets are of interest in their own right, and it ould be relevant to inlude these in the

analysis. However, non-hedgeable risks prelude the existene of a stationary solution and all

for an alternative objet of study. To stay in the spirit of the urrent work, one possibility would

be to demand a low probability of insolveny on a given horizon and to study the dynamis of

the fund onditioned on �survival�.

Another avenue of researh is the apital market model and the investment strategy. In
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partiular, it would be of interest to study apital markets with heavy-tailed returns and option

based investment strategies. The random walk results of Setion 2 are general results whih

apply to any funding ratio proess of the form

Fn = min
{
(Fn−1 − 1)e−Xn + 1, κ

}
for n ∈ N0, (88)

where the Xn's are i.i.d. random variables. Note that Xn represents the joint e�et of the apital

market return and the investment strategy. In this paperXn follows a normal distribution, but in

priniple any distribution an be assumed. However, to apply the results we need the distribution

of Sn = X1 + . . . +Xn so in pratie only distributions with known onvolution properties an

be handled analytially, e.g. Gamma or ompound Poisson distributions. Otherwise we have to

resort to numerial methods.

With fat-tailed returns or jumps in the market large losses an our over short periods of

time, or even instantly. With no limits on the size of losses and if the fund does not have aess

to tail protetion, the fund an stay funded with ertainty only if it does not lever its bonus

potential. On the other hand, if tail protetion is available the fund an still use leverage, but

the exposure in exess of the bonus potential has to be proteted. In general, the risk of big

losses auses the fund to behave more autiously and onsequently it will fae lower expeted

returns in the long run.
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A Proofs

A.1 Entrane times and partitions

Proof of Theorem 2.3. Rearranging (5) we get for 0 ≤ s < 1

1− exp

( ∞∑

n=1

(−1)
pn
n
sn

)
=

∞∑

n=1

τns
n. (89)

From Theorem 2.2 we get that

exp

( ∞∑

n=1

(−1)
pn
n
sn

)
= 1 +

∞∑

m=1

∑

σ∈Dm

sm

σ1!σ2! · · ·σm!

m∏

n=1

(
(−1)

pn
n

)σn

= 1 +

∞∑

m=1

∑

σ∈Dm

sgn(σ)

dσ
sm

m∏

n=1

pσn

n . (90)

Insert this in (89) to obtain

−
∞∑

m=1

∑

σ∈Dm

sgn(σ)

dσ
sm

m∏

n=1

pσn

n =

∞∑

n=1

τns
n. (91)

Finally, by inspetion of the left and the right hand side of the above equality we obtain (12).

Proof of Theorem 2.4. We need to prove two identities

∑

σ∈Dn

kσk

dσ
= 1, (92)

and

∑

σ∈Dn

1

dσ
= 1. (93)

We �rst note that (93) follows from (92) by summing over k. Using that

∑n
k=1 kσk = n for

σ ∈ Dn we get

n =
n∑

k=1

∑

σ∈Dn

kσk

dσ
=
∑

σ∈Dn

∑n
k=1 kσk

dσ
=
∑

σ∈Dn

n

dσ
, (94)

and dividing throughout by n yields (93).

We next prove (92) by indution in n. For n = 1 the relation is trivially satis�ed. Assume

that (92) holds for n− 1 and all 1 ≤ k ≤ n− 1; then (93) also holds for n− 1 as just shown. To
prove that (92) holds for n and 1 ≤ k ≤ n there are three ases to onsider:

For k = n the only term in the sum di�erent from zero ours for σ = (0, . . . , 0, 1), and hene

∑

σ∈Dn

nσn∏n
i=1 σi! iσi

=
n

1!n
= 1. (95)

For 1 < k < n we use that there is a one-to-one mapping between permutations in Dn with

σk > 0 and permutations in Dn−1 with πk−1 > 0 de�ned by π = (σ1, . . . , σk−2, σk−1 + 1, σk −
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1, σk+1, . . . , σk−1). Noting that σk > 0 with k < n implies σn = 0 we have

∑

σ∈Dn

kσk∏n
i=1 σi! iσi

=
∑

σ∈Dn:σk>0

kσk∏n−1
i=1 σi! iσi

=
∑

π∈Dn−1:πk−1>0

k(πk + 1)
∏n−1

i=1 πi! iπi

πk−1!(k − 1)πk−1πk! k
πk

(πk−1 − 1)!(k − 1)πk−1−1(πk + 1)! kπk+1

=
∑

π∈Dn−1:πk−1>0

(k − 1)πk−1∏n−1
i=1 πi! iπi

= 1, (96)

where the last equality follows by the indution hypothesis.

For k = 1 the mapping π = (σ1 − 1, σ2, . . . , σn−1) is one-to-one between permutations in Dn

with σ1 > 0 and all permutations in Dn−1. We then have

∑

σ∈Dn

σ1∏n
i=1 σi! iσi

=
∑

π∈Dn−1

π1 + 1
∏n−1

i=1 πi! iπi

π1!

(π1 + 1)!
=

∑

π∈Dn−1

1
∏n−1

i=1 πi! iπi

= 1, (97)

where the last equality follows from (93) whih holds for n− 1 by the indution hypothesis.

A.2 Entrane time moments

Proof of Theorem 2.5. Let G1 = H ′
, where H is de�ned in (6), and de�ne reursively

Gn = H ′Gn−1 +G′
n−1 (n ≥ 2). (98)

We �rst establish the relation

τ (n) = −eHGn (n ≥ 1). (99)

Clearly, the relation holds for n = 1. Assuming (99) holds for n− 1 we have by (98)

τ (n) =
(
−eHGn−1

)′

= −eH
(
H ′Gn−1 +G′

n−1

)

= −eHGn, (100)

and hene (99) holds for all n by indution.

Having established (99) we now need to prove

Gn =
∑

σ∈Dn

cσHσ (n ≥ 1). (101)

As before we will prove this by indution. For n = 1 the equation reads G1 = H ′
whih is true

by de�nition. Assume (101) holds for n− 1. By (98) and the indution hypothesis we have

Gn =
∑

σ∈Dn−1

cσH
′Hσ +

∑

σ∈Dn−1

cσ(Hσ)
′, (102)

where for σ = (σ1, . . . , σn−1) ∈ Dn−1

(Hσ)
′ = σ1H

σ1−1
1 Hσ2

2

n−1∏

i=2

Hσi

i +Hσ1
1

(
n−1∏

i=2

Hσi

i

)′

= . . .

=
n−1∑

k=1

σkH
σk−1
k Hk+1

∏

i6=k

Hσi

i . (103)
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Thus

Gn =
∑

σ∈Dn−1

cσH
′Hσ +

∑

σ∈Dn−1

n−1∑

k=1

cσσkH
σk−1
k Hk+1

∏

i6=k

Hσi

i . (104)

Let σ∗ = (σ∗
1 , . . . , σ

∗
n) ∈ Dn be �xed, but arbitrary. We will identify the terms in (104) whih

ontain the fator Hσ∗

and show that the oe�ients add up to cσ∗
. There are three ases (note

that in the �rst two ases the ondition implies that σ∗
n = 0):

1. σ∗
1 > 0: Then H ′Hσ = Hσ∗

with σ = (σ∗
1 − 1, σ∗

2 , . . . , σ
∗
n−1) ∈ Dn−1. The �rst sum in

(104) ontains a term with this fator and oe�ient cσ.

2. σ∗
j > 0 for some 2 ≤ j ≤ n−1: Then Hσk−1

k Hk+1

∏
i6=k H

σi

i = Hσ∗

with σ = (σ∗
1 , . . . , σ

∗
j−2,

σ∗
j−1 +1, σ∗

j − 1, σ∗
j+1, . . . , σ

∗
n−1) ∈ Dn−1 and k = j − 1. The seond sum in (104) ontains

a term with this fator and oe�ient cσ(σ
∗
j−1 + 1).

3. σ∗
n > 0: In this ase σ∗ = (0, . . . , 0, 1) and hene Hσ∗

= Hn = Hσk−1
k Hk+1

∏
i6=k H

σi

i for

σ = (0, . . . , 0, 1) ∈ Dn−1 and k = n− 1. This term is inluded in the seond sum of (104)

with oe�ient cσ.

Hene, for eah positive omponent of σ∗
there exists a term in (104) ontaining the fator

Hσ∗

. Conversely, every term in (104) orresponds to a σ∗ ∈ Dn and is of the form overed in

one of the three ases above. Hene, we have

Gn =
∑

σ∗∈Dn

Hσ∗
∑

1≤j≤n:σ∗

j
>0

(σ∗
j−1 + 1)cσ(j) (105)

where σ(j) = (σ∗
1 , . . . , σ

∗
j−2, σ

∗
j−1 + 1, σ∗

j − 1, σ∗
j+1, . . . , σ

∗
n−1) ∈ Dn−1 and we, for notational

onveniene, de�ne σ∗
0 ≡ 0. Using (10) we an write the inner sum in (105) as

∑

1≤j≤n:σ∗

j
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n!∏n

i=1 σ
∗
i !(i!)

σ∗

i

= cσ∗ , (106)

where the penultimate equality uses that

∑
1≤j≤n:σ∗

j
>0 σ

∗
j j = n sine σ∗ ∈ Dn. This shows that

(101) holds and we are �nished.

Before proving Theorem 2.6 we need to state the following two lemmas:

Lemma A.1. For n ≥ 1, (a1, . . . , an) ∈ Cn
and b ∈ C

∑

σ∈Dn

n∏

i=1

(
ai −

bi

i

)σi 1

σi!
=
∑

σ∈Dn

n∏

i=1

aσi

i

σi!
− b

∑

σ∈Dn−1

n−1∏

i=1

aσi

i

σi!
, (107)

where the last sum is 1 by de�nition for n = 1.
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Proof. We �rst note that the left-hand side of (107) an be written

∑

σ∈Dn

n∏

i=1

aσi

i

σi!
− b

∑

σ∈Dn

σ1
aσ1−1
1

σ1!

n∏

i=2

aσi

i

σi!
+ . . . , (108)

where . . . denotes higher order terms of b. Sine there is only a ontribution to the �rst order

term if σ1 > 0, and sine σ ∈ Dn with σ1 > 0 if and only if (σ1 − 1, σ2, . . . , σn−1) ∈ Dn−1, we

have that the �rst order term is given by

b
∑

σ∈Dn:σ1>0

σ1
aσ1−1
1

σ1!

n∏

i=2

aσi

i

σi!
= b

∑

σ∈Dn−1

n−1∏

i=1

aσi

i

σi!
. (109)

Hene we are �nished if we show that all higher order terms in (108) vanish.

For m ≥ 2, the m'th order terms are of the form

n∏

i=1

aηi

i

(−bi

i

)νi 1

(ηi + νi)!

(
ηi + νi

νi

)
=

sgn(ν)

dν
bm

n∏

i=1

aηi

i

ηi!
, (110)

where ν ∈ Dm and η ∈ Dn−m, with the onvention that νj = 0 for j > m and, similarly, ηj = 0
for j > n−m (for m = n, ηj = 0 for all j). The higher order terms in (108) an then be written

n∑

m=2

bm
∑

η∈Dn−m

n∏

i=1

aηi

i

ηi!

∑

ν∈Dm

sgn(ν)

dν
= 0, (111)

sine the inner sum is zero for m ≥ 2 by equation (13).

We also need the following ombination of Kroneker's lemma, see e.g. Theorem 2.5.5 of

Durrett (2010), and Frobenius' theorem, see e.g. Chapter 7 of Duren (2012).

Lemma A.2. If

∑∞
k=1 ak onverges to a �nite limit then

f(s) = (1− s)

∞∑

k=1

skkak (112)

onverges for |s| < 1 and f(s) → 0 as s → 1−.

Proof. Let bk = k and xk = kak. Then bk ↑ ∞ and, by assumption,

∑∞
k=1 xk/bk =

∑∞
k=1 ak

onverges. By Kroneker's lemma this implies that

1

bn

n∑

k=1

xk =
1

n

n∑

k=1

kak → 0 as n → ∞. (113)

Next, let a0 = 0 and ck = kak − (k − 1)ak−1 for k ≥ 1. Summation by parts yields

f(s) = (1− s)

∞∑

k=1

skkak =

∞∑

k=1

sk(kak − (k − 1)ak−1) =

∞∑

k=1

skck, (114)

where the series

∑∞
k=1 ck is Cesàro summable to zero by (113), i.e. the average of the partial sums,∑k

m=1 cm = kak, onverges to zero. By Frobenius' theorem we onlude that f(s) onverges for
|s| < 1 and f(s) → 0 as s → 1−.

With those two lemmas available we are now ready to prove Theorem 2.6.
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Proof of Theorem 2.6. By Theorem 2.5 we have for |s| < 1

τ (n)(s) = −eH(s)
∑

σ∈Dn

cσHσ(s), (115)

where H(s) = −∑∞
k=1

sk

k P (Sk ≤ 0) and

Hσ(s) =

n∏

i=1

(
−

∞∑

k=i

(k)i
k

sk−iP (Sk ≤ 0)

)σi

. (116)

Using that log(1 − s) = −
∑∞

k=1 s
k/k, and hene (i− 1)!/(1− s)i =

∑∞
k=i s

k−i(k)i/k, we get

eH(s) = exp

( ∞∑

k=1

sk

k
(1− P (Sk ≤ 0))−

∞∑

k=1

sk

k

)

= exp

( ∞∑

k=1

sk

k
P (Sk > 0)

)
(1− s), (117)

and

cσHσ(s) = n!

n∏

i=1

( ∞∑

k=i

(k)i
k

sk−i(1 − P (Sk ≤ 0))−
∞∑

k=i

(k)i
k

sk−i

)σi

1

σi!(i!)σi

= n!

n∏

i=1

( ∞∑

k=i

(k)i
k

sk−iP (Sk > 0)− (i− 1)!

(1 − s)i

)σi

1

σi!(i!)σi

= n!

n∏

i=1

(
ai −

bi

i

)σi 1

σi!
, (118)

where ai =
∑∞

k=i
(k)i
k sk−iP (Sk > 0)/i! and b = 1/(1− s). By Lemma A.1 we then have

∑

σ∈Dn

cσHσ(s)/n! =
∑

σ∈Dn

n∏

i=1

aσi

i

σi!
− b

∑

σ∈Dn−1

n−1∏

i=1

aσi

i

σi!
. (119)

Theorem 2.5 in a ombination with (117) and (119) yields

τ (n)(s) = exp

( ∞∑

k=1

sk

k
P (Sk > 0)

)
∑

σ∈Dn−1

ncσ

n−1∏

i=1

( ∞∑

k=i

(k)i
k

sk−iP (Sk > 0)

)σi

− exp

( ∞∑

k=1

sk

k
P (Sk > 0)

)
∑

σ∈Dn

(1− s)cσ

n∏

i=1

( ∞∑

k=i

(k)i
k

sk−iP (Sk > 0)

)σi

. (120)

By assumption

∑∞
k=1 k

n−2P (Sk > 0) < ∞, and by dominated onvergene, all series of order

at most n− 2 thereby onverge to �nite limits as s tends to 1−. In a ombination with Lemma

A.2 we also have

lim
s→1−

(1− s)

∞∑

k=n

(k)n
k

sk−nP (Sk > 0) = 0, (121)

and we onlude

E((τ−)n) = lim
s→1−

τ (n)(s) = exp

( ∞∑

k=1

1

k
P (Sk > 0)

)
n!

∑

σ∈Dn−1

n−1∏

i=1

(
hi

i!

)σi 1

σi!
< ∞. (122)
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A.3 Conditional harateristi funtions

Proof of Theorem 2.8. De�ne the (partial) harateristi funtions

γn(ζ) = E
(
eiζSn ; τ− = n

)
, (123)

in terms of whih χ an be written as

χ(s, ζ) =

∞∑

n=1

snγn(ζ). (124)

Rearranging (26) we get

1− exp

(
−

∞∑

n=1

sn

n
gn

)
=

∞∑

n=1

snγn(ζ), (125)

where we have de�ned gn = E
(
eiζSn ;Sn ≤ 0

)
. From Theorem 2.2 we get that

exp

( ∞∑

n=1

(−1)
gn
n
sn

)
= 1 +

∞∑

m=1

∑

σ∈Dm

sm

σ1!σ2! · · ·σm!

m∏

n=1

(
(−1)

gn
n

)σn

= 1 +

∞∑

m=1

∑

σ∈Dm

sgn(σ)

dσ
sm

m∏

n=1

gσn

n . (126)

Insert this in (125) to obtain

−
∞∑

m=1

∑

σ∈Dm

sgn(σ)

dσ
sm

m∏

n=1

gσn

n =
∞∑

n=1

snγn(ζ). (127)

By inspetion of the left and the right hand side of the equality above we obtain

γn(ζ) = −
∑

σ∈Dn

sgn(σ)

dσ

n∏

k=1

(
E
(
eiζSk ;Sk ≤ 0

))σk
. (128)

Finally, divide by τn to obtain (27).

Proof of Theorem 2.9. For �xed ζ and n we have the following �rst-entrane deomposition

E(eiζSn) =

n∑

k=1

E(eiζSn ; τ− = k) + E(eiζSn ; τ− > n)

=

n∑

k=1

E(eiζSk ; τ− = k)E(eiζSn−k) + E(eiζSn ; τ− > n), (129)

where the seond equality follows from the Markov property and the random walk struture.

For ease of notation we let ek = E(eiζSk). In this notation, the deomposition above an be

written

E(eiζSn ; τ− > n) = en −
n∑

k=1

E(eiζSk ; τ− = k)en−k. (130)

Multiplying both sides of (130) by e1 yields the relation

E(eiζSn ; τ− > n)e1 = en+1 −
n∑

k=1

E(eiζSk ; τ− = k)en+1−k

= E(eiζSn+1 ; τ− > n+ 1) + E(eiζSn+1 ; τ− = n+ 1), (131)
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where we have used that for all k, eke1 = ek+1.

We are now ready to prove (28) by indution in n. Sine the events (τ− > 1) and (S1 > 0)
are idential equation (28) holds for n = 1. Next, assume that (28) holds for n. Let e+k =
E(eiζSk ;Sk > 0) and note that E(eiζSk ;Sk ≤ 0) = ek − e+k . From Theorem 2.8 we have

E(eiζSn+1 ; τ− = n+ 1) = −
∑

σ∈Dn+1

n+1∏

k=1

(
e+k − ek

k

)σk
1

σk!
. (132)

Using that ek = ek1 we get from (131), the indution hypothesis and (132) that

E(eiζSn+1 ; τ− > n+ 1) = e1
∑

σ∈Dn

n∏

k=1

(
e+k
k

)σk
1

σk!
+

∑

σ∈Dn+1

n+1∏

k=1

(
e+k − ek1

k

)σk
1

σk!

=
∑

σ∈Dn+1

n+1∏

k=1

(
e+k
k

)σk
1

σk!
, (133)

where the seond equality uses Lemma A.1 with ak = e+k /k and b = e1. This shows that (28)
holds for n+ 1 and we are �nished.
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